Do you want to publish a course? Click here

Probabilistic Inference for Camera Calibration in Light Microscopy under Circular Motion

112   0   0.0 ( 0 )
 Added by Yuanhao Guo Dr.
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Robust and accurate camera calibration is essential for 3D reconstruction in light microscopy under circular motion. Conventional methods require either accurate key point matching or precise segmentation of the axial-view images. Both remain challenging because specimens often exhibit transparency/translucency in a light microscope. To address those issues, we propose a probabilistic inference based method for the camera calibration that does not require sophisticated image pre-processing. Based on 3D projective geometry, our method assigns a probability on each of a range of voxels that cover the whole object. The probability indicates the likelihood of a voxel belonging to the object to be reconstructed. Our method maximizes a joint probability that distinguishes the object from the background. Experimental results show that the proposed method can accurately recover camera configurations in both light microscopy and natural scene imaging. Furthermore, the method can be used to produce high-fidelity 3D reconstructions and accurate 3D measurements.



rate research

Read More

Camera calibration is an important prerequisite towards the solution of 3D computer vision problems. Traditional methods rely on static images of a calibration pattern. This raises interesting challenges towards the practical usage of event cameras, which notably require image change to produce sufficient measurements. The current standard for event camera calibration therefore consists of using flashing patterns. They have the advantage of simultaneously triggering events in all reprojected pattern feature locations, but it is difficult to construct or use such patterns in the field. We present the first dynamic event camera calibration algorithm. It calibrates directly from events captured during relative motion between camera and calibration pattern. The method is propelled by a novel feature extraction mechanism for calibration patterns, and leverages existing calibration tools before optimizing all parameters through a multi-segment continuous-time formulation. As demonstrated through our results on real data, the obtained calibration method is highly convenient and reliably calibrates from data sequences spanning less than 10 seconds.
Most current single image camera calibration methods rely on specific image features or user input, and cannot be applied to natural images captured in uncontrolled settings. We propose directly inferring camera calibration parameters from a single image using a deep convolutional neural network. This network is trained using automatically generated samples from a large-scale panorama dataset, and considerably outperforms other methods, including recent deep learning-based approaches, in terms of standard L2 error. However, we argue that in many cases it is more important to consider how humans perceive errors in camera estimation. To this end, we conduct a large-scale human perception study where we ask users to judge the realism of 3D objects composited with and without ground truth camera calibration. Based on this study, we develop a new perceptual measure for camera calibration, and demonstrate that our deep calibration network outperforms other methods on this measure. Finally, we demonstrate the use of our calibration network for a number of applications including virtual object insertion, image retrieval and compositing.
This paper addresses the challenging unsupervised scene flow estimation problem by jointly learning four low-level vision sub-tasks: optical flow $textbf{F}$, stereo-depth $textbf{D}$, camera pose $textbf{P}$ and motion segmentation $textbf{S}$. Our key insight is that the rigidity of the scene shares the same inherent geometrical structure with object movements and scene depth. Hence, rigidity from $textbf{S}$ can be inferred by jointly coupling $textbf{F}$, $textbf{D}$ and $textbf{P}$ to achieve more robust estimation. To this end, we propose a novel scene flow framework named EffiScene with efficient joint rigidity learning, going beyond the existing pipeline with independent auxiliary structures. In EffiScene, we first estimate optical flow and depth at the coarse level and then compute camera pose by Perspective-$n$-Points method. To jointly learn local rigidity, we design a novel Rigidity From Motion (RfM) layer with three principal components: emph{}{(i)} correlation extraction; emph{}{(ii)} boundary learning; and emph{}{(iii)} outlier exclusion. Final outputs are fused based on the rigid map $M_R$ from RfM at finer levels. To efficiently train EffiScene, two new losses $mathcal{L}_{bnd}$ and $mathcal{L}_{unc}$ are designed to prevent trivial solutions and to regularize the flow boundary discontinuity. Extensive experiments on scene flow benchmark KITTI show that our method is effective and significantly improves the state-of-the-art approaches for all sub-tasks, i.e. optical flow ($5.19 rightarrow 4.20$), depth estimation ($3.78 rightarrow 3.46$), visual odometry ($0.012 rightarrow 0.011$) and motion segmentation ($0.57 rightarrow 0.62$).
This paper presents a novel semantic-based online extrinsic calibration approach, SOIC (so, I see), for Light Detection and Ranging (LiDAR) and camera sensors. Previous online calibration methods usually need prior knowledge of rough initial values for optimization. The proposed approach removes this limitation by converting the initialization problem to a Perspective-n-Point (PnP) problem with the introduction of semantic centroids (SCs). The closed-form solution of this PnP problem has been well researched and can be found with existing PnP methods. Since the semantic centroid of the point cloud usually does not accurately match with that of the corresponding image, the accuracy of parameters are not improved even after a nonlinear refinement process. Thus, a cost function based on the constraint of the correspondence between semantic elements from both point cloud and image data is formulated. Subsequently, optimal extrinsic parameters are estimated by minimizing the cost function. We evaluate the proposed method either with GT or predicted semantics on KITTI dataset. Experimental results and comparisons with the baseline method verify the feasibility of the initialization strategy and the accuracy of the calibration approach. In addition, we release the source code at https://github.com/--/SOIC.
This paper proposes minimal solvers that use combinations of imaged translational symmetries and parallel scene lines to jointly estimate lens undistortion with either affine rectification or focal length and absolute orientation. We use constraints provided by orthogonal scene planes to recover the focal length. We show that solvers using feature combinations can recover more accurate calibrations than solvers using only one feature type on scenes that have a balance of lines and texture. We also show that the proposed solvers are complementary and can be used together in a RANSAC-based estimator to improve auto-calibration accuracy. State-of-the-art performance is demonstrated on a standard dataset of lens-distorted urban images. The code is available at https://github.com/ylochman/single-view-autocalib.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا