The interplay of Anderson localisation and decoherence results in intricate dynamics but is notoriously difficult to simulate on classical computers. We develop the framework for a quantum simulation of such an open quantum system making use of time-varying randomised gradients, and show that even an implementation with limited experimental resources results in accurate simulations.
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories. The latter emerge in the unraveling of Markovian quantum master equations and/or in continuous quantum measurements. Ensemble-averaging quantum trajectories at the occurrence of quantum jumps, i.e., the jumptimes, gives rise to a discrete, deterministic evolution which is highly sensitive to the presence of dark states. We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians, which is also reflected by the corresponding jumptime dynamics. The topological character of the latter can then be observed, for instance, in the transport behavior, exposing an infinite hierarchy of topological phase transitions. We develop our theory for one- and two-dimensional two-band Hamiltonians, and show that the topological behavior is directly manifest for chiral, PT, or time reversal-symmetric Hamiltonians.
We present a quantum algorithm to simulate general finite dimensional Lindblad master equations without the requirement of engineering the system-environment interactions. The proposed method is able to simulate both Markovian and non-Markovian quantum dynamics. It consists in the quantum computation of the dissipative corrections to the unitary evolution of the system of interest, via the reconstruction of the response functions associated with the Lindblad operators. Our approach is equally applicable to dynamics generated by effectively non-Hermitian Hamiltonians. We confirm the quality of our method providing specific error bounds that quantify itss accuracy.
Simulating quantum mechanics is known to be a difficult computational problem, especially when dealing with large systems. However, this difficulty may be overcome by using some controllable quantum system to study another less controllable or accessible quantum system, i.e., quantum simulation. Quantum simulation promises to have applications in the study of many problems in, e.g., condensed-matter physics, high-energy physics, atomic physics, quantum chemistry and cosmology. Quantum simulation could be implemented using quantum computers, but also with simpler, analog devices that would require less control, and therefore, would be easier to construct. A number of quantum systems such as neutral atoms, ions, polar molecules, electrons in semiconductors, superconducting circuits, nuclear spins and photons have been proposed as quantum simulators. This review outlines the main theoretical and experimental aspects of quantum simulation and emphasizes some of the challenges and promises of this fast-growing field.
We discuss the equilibrium and out of equilibrium dynamics of cavity QED in presence of dissipation beyond the standard perturbative treatment of losses. Using the dynamical polaron emph{ansatz} and Matrix Product State simulations, we discuss the case where both light-matter $g$-coupling and system-bath interaction are in the ultrastrong coupling regime. We provide a critical $g$ for the onset of Rabi oscillations. Besides, we demonstrate that the qubit is emph{dressed} by the cavity and dissipation. That such dressing governs the dynamics and, thus, it can be measured. Finally, we sketch an implementation for our theoretical ideas within circuit QED technology.
We discuss in detail the implementation of an open-system quantum simulator with Rydberg states of neutral atoms held in an optical lattice. Our scheme allows one to realize both coherent as well as dissipative dynamics of complex spin models involving many-body interactions and constraints. The central building block of the simulation scheme is constituted by a mesoscopic Rydberg gate that permits the entanglement of several atoms in an efficient, robust and quick protocol. In addition, optical pumping on ancillary atoms provides the dissipative ingredient for engineering the coupling between the system and a tailored environment. As an illustration, we discuss how the simulator enables the simulation of coherent evolution of quantum spin models such as the two-dimensional Heisenberg model and Kitaevs toric code, which involves four-body spin interactions. We moreover show that in principle also the simulation of lattice fermions can be achieved. As an example for controlled dissipative dynamics, we discuss ground state cooling of frustration-free spin Hamiltonians.