The bias of dark matter tracers: assessing the accuracy of mapping techniques


Abstract in English

We present a comparison between approximated methods for the construction of mock catalogs based on the halo-bias mapping technique. To this end, we use as reference a high resolution $N$-body simulation of 3840$^3$ dark matter particles on a 400$h^{-1}rm{Mpc}$ cube box from the Multidark suite. In particular, we explore parametric versus non-parametric bias mapping approaches and compare them at reproducing the halo distribution in terms of the two and three point statistics down to $sim 10^8,{rm M}_{odot},h^{-1}$ halo masses. Our findings demonstrate that the parametric approach remains inaccurate even including complex deterministic and stochastic components. On the contrary, the non-parametric one is indistinguishable from the reference $N$-body calculation in the power-spectrum beyond $k=1,h,{rm Mpc}^{-1}$, and in the bispectrum for typical configurations relevant to baryon acoustic oscillation analysis. We conclude, that approaches which extract the full bias information from $N$-body simulations in a non-parametric fashion are ready for the analysis of the new generation of large scale structure surveys.

Download