Do you want to publish a course? Click here

Support Recovery for Sparse Signals with Unknown Non-stationary Modulation

166   0   0.0 ( 0 )
 Added by Youye Xie
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The problem of estimating a sparse signal from low dimensional noisy observations arises in many applications, including super resolution, signal deconvolution, and radar imaging. In this paper, we consider a sparse signal model with non-stationary modulations, in which each dictionary atom contributing to the observations undergoes an unknown, distinct modulation. By applying the lifting technique, under the assumption that the modulating signals live in a common subspace, we recast this sparse recovery and non-stationary blind demodulation problem as the recovery of a column-wise sparse matrix from structured linear observations, and propose to solve it via block $ell_{1}$-norm regularized quadratic minimization. Due to observation noise, the sparse signal and modulation process cannot be recovered exactly. Instead, we aim to recover the sparse support of the ground truth signal and bound the recovery errors of the signals non-zero components and the modulation process. In particular, we derive sufficient conditions on the sample complexity and regularization parameter for exact support recovery and bound the recovery error on the support. Numerical simulations verify and support our theoretical findings, and we demonstrate the effectiveness of our model in the application of single molecule imaging.



rate research

Read More

270 - C. Herzet , C. Soussen , J. Idier 2013
We address the exact recovery of a k-sparse vector in the noiseless setting when some partial information on the support is available. This partial information takes the form of either a subset of the true support or an approximate subset including wrong atoms as well. We derive a new sufficient and worst-case necessary (in some sense) condition for the success of some procedures based on lp-relaxation, Orthogonal Matching Pursuit (OMP) and Orthogonal Least Squares (OLS). Our result is based on the coherence mu of the dictionary and relaxes the well-known condition mu<1/(2k-1) ensuring the recovery of any k-sparse vector in the non-informed setup. It reads mu<1/(2k-g+b-1) when the informed support is composed of g good atoms and b wrong atoms. We emphasize that our condition is complementary to some restricted-isometry based conditions by showing that none of them implies the other. Because this mutual coherence condition is common to all procedures, we carry out a finer analysis based on the Null Space Property (NSP) and the Exact Recovery Condition (ERC). Connections are established regarding the characterization of lp-relaxation procedures and OMP in the informed setup. First, we emphasize that the truncated NSP enjoys an ordering property when p is decreased. Second, the partial ERC for OMP (ERC-OMP) implies in turn the truncated NSP for the informed l1 problem, and the truncated NSP for p<1.
We propose and analyze a solution to the problem of recovering a block sparse signal with sparse blocks from linear measurements. Such problems naturally emerge inter alia in the context of mobile communication, in order to meet the scalability and low complexity requirements of massive antenna systems and massive machine-type communication. We introduce a new variant of the Hard Thresholding Pursuit (HTP) algorithm referred to as HiHTP. We provide both a proof of convergence and a recovery guarantee for noisy Gaussian measurements that exhibit an improved asymptotic scaling in terms of the sampling complexity in comparison with the usual HTP algorithm. Furthermore, hierarchically sparse signals and Kronecker product structured measurements naturally arise together in a variety of applications. We establish the efficient reconstruction of hierarchically sparse signals from Kronecker product measurements using the HiHTP algorithm. Additionally, we provide analytical results that connect our recovery conditions to generalized coherence measures. Again, our recovery results exhibit substantial improvement in the asymptotic sampling complexity scaling over the standard setting. Finally, we validate in numerical experiments that for hierarchically sparse signals, HiHTP performs significantly better compared to HTP.
312 - Zhongxing Sun , Wei Cui , 2019
This paper studies the problem of recovering a structured signal from a relatively small number of corrupted non-linear measurements. Assuming that signal and corruption are contained in some structure-promoted set, we suggest an extended Lasso to disentangle signal and corruption. We also provide conditions under which this recovery procedure can successfully reconstruct both signal and corruption.
The sparsity in levels model recently inspired a new generation of effective acquisition and reconstruction modalities for compressive imaging. Moreover, it naturally arises in various areas of signal processing such as parallel acquisition, radar, and the sparse corruptions problem. Reconstruction strategies for sparse in levels signals usually rely on a suitable convex optimization program. Notably, although iterative and greedy algorithms can outperform convex optimization in terms of computational efficiency and have been studied extensively in the case of standard sparsity, little is known about their generalizations to the sparse in levels setting. In this paper, we bridge this gap by showing new stable and robust uniform recovery guarantees for sparse in level variants of the iterative hard thresholding and the CoSaMP algorithms. Our theoretical analysis generalizes recovery guarantees currently available in the case of standard sparsity and favorably compare to sparse in levels guarantees for weighted $ell^1$ minimization. In addition, we also propose and numerically test an extension of the orthogonal matching pursuit algorithm for sparse in levels signals.
This paper investigates the problem of estimating sparse channels in massive MIMO systems. Most wireless channels are sparse with large delay spread, while some channels can be observed having sparse common support (SCS) within a certain area of the antenna array, i.e., the antenna array can be grouped into several clusters according to the sparse supports of channels. The SCS property is attractive when it comes to the estimation of large number of channels in massive MIMO systems. Using the SCS of channels, one expects better performance, but the number of clusters and the elements for each cluster are always unknown in the receiver. In this paper, {the Dirichlet process} is exploited to model such sparse channels where those in each cluster have SCS. We proposed a low complexity message passing based sparse Bayesian learning to perform channel estimation in massive MIMO systems by using combined BP with MF on a factor graph. Simulation results demonstrate that the proposed massive MIMO sparse channel estimation outperforms the state-of-the-art algorithms. Especially, it even shows better performance than the variational Bayesian method applied for massive MIMO channel estimation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا