Using a $3.19~mathrm{fb}^{-1}$ data sample collected at the $sqrt{s}~=~4.178$ GeV with the BESIII detector, we search for the rare decay $D_{s}^{+} rightarrow p bar{p} e^{+} u_{e} $. No significant signal is observed, and an upper limit of $mathcal{B}(D_{s}^{+} rightarrow p bar{p} e^{+} u_{e}) < 2.0 times 10^{-4}$ is set at the 90% confidence level. This measurement is useful input in understanding the baryonic transition of $D_{s}^{+}$ mesons.
By analyzing 482 pb$^{-1}$ of $e^+e^-$ collision data collected at $sqrt s=4.009$ GeV with the BESIII detector at the BEPCII collider, we measure the absolute branching fractions for the semileptonic decays $D_{s}^{+}toeta e^{+} u_{e}$ and $D_{s}^{+}to etae^{+} u_{e}$ to be ${B}(D_{s}^{+}rightarroweta e^{+} u_{e})=(2.30pm0.31pm0.08)$% and ${B}(D_{s}^{+}rightarrowetae^{+} u_{e}) = (0.93pm0.30pm0.05)$%, respectively, and their ratio $frac{{B}(D_{s}^{+}rightarrowetae^{+} u_{e})} {{B}(D_{s}^{+}rightarroweta e^{+} u_{e})}=0.40pm0.14pm0.02$, where the first uncertainties are statistical and the second ones are systematic. The results are in good agreement with previous measurements within uncertainties; they can be used to determine the $eta-eta$ mixing angle and improve upon the $D_s^+$ semileptonic branching ratio precision.
Using 586 $textrm{pb}^{-1}$ of $e^{+}e^{-}$ collision data acquired at $sqrt{s}=4.170$ GeV with the CLEO-c detector at the Cornell Electron Storage Ring, we report the first observation of $D_{s}^{*+} to D_{s}^{+} e^{+} e^{-}$ with a significance of $5.3 sigma$. The ratio of branching fractions $calB(D_{s}^{*+} to D_{s}^{+} e^{+} e^{-}) / calB(D_{s}^{*+} to D_{s}^{+} gamma)$ is measured to be $[ 0.72^{+0.15}_{-0.13} (textrm{stat}) pm 0.10 (textrm{syst})]%$, which is consistent with theoretical expectations.
Using 2.92 fb$^{-1}$ of electron-positron annihilation data collected at a center-of-mass energy of $sqrt{s}= 3.773$ GeV with the BESIII detector, we present an improved measurement of the branching fraction $mathcal{B}(D^+ to omega e^+ u_{e}) = (1.63pm0.11pm0.08)times 10^{-3}$. The parameters defining the corresponding hadronic form factor ratios at zero momentum transfer are determined for the first time, we measure them to be $r_V = 1.24pm0.09pm0.06$ and $r_2 = 1.06pm0.15 pm 0.05$. The first and second uncertainties are statistical and systematic, respectively. We also search for the decay $D^+ to phi e^+ u_{e}$. An improved upper limit $mathcal{B}(D^+ to phi e^+ u_{e}) < 1.3 times 10^{-5}$ is set at 90% confidence level.
Using a sample of $2.25times 10^8$ $J/psi$ events collected with the BESIII detector at the BEPCII collider, we search for the $J/psi$ semi-leptonic weak decay $J/psi to D^{-}_{s} e^{+} u_{e}+c.c.$ with a much higher sensitivity than previous searches. We also perform the first search for $J/psi to D^{*-}_{s} e^{+} u_{e}+c.c.$ No significant excess of a signal above background is observed in either channel. At the $90%$ confidence level, the upper limits are determined to be $mathcal{B}(J/psi to D^{-}_{s}e^{+} u_{e}+c.c.)<1.3times10^{-6}$ and $mathcal{B}(J/psi to {D^{*}_{s}}^{-}e^{+} u_{e}+c.c.)<1.8times10^{-6}$, respectively. Both are consistent with Standard Model predictions.
Using $10.1times10^{9}$ $J/psi$ events produced by the Beijing Electron Positron Collider (BEPCII) at a center-of-mass energy $sqrt{s}=3.097~rm{GeV}$ and collected with the BESIII detector, we present a search for the rare semi-leptonic decay $J/psito D^{-}e^{+} u_{e}+c.c.$. No excess of signal above background is observed, and an upper limit on the branching fraction $mathcal{B}(J/psito D^{-}e^{+} u_{e}+c.c.)<7.1times10^{-8}$ is obtained at $90%$ confidence level. This is an improvement of more than two orders of magnitude over the previous best limit.