No Arabic abstract
We explore an extended quantum Rabi model describing the interaction between a two-mode bosonic field and a three-level atom. Quantum phase transitions of this few degree of freedom model is found when the ratio $eta$ of the atom energy scale to the bosonic field frequency approaches infinity. An analytical solution is provided when the two lowest-energy levels are degenerate. According to it, we recognize that the phase diagram of the model consists of three regions: one normal phase and two superradiant phases. The quantum phase transitions between the normal phase and the two superradiant phases are of second order relating to the spontaneous breaking of the discrete $Z_{2}$ symmetry. On the other hand, the quantum phase transition between the two different superradiant phases is discontinuous with a phase boundary line relating to the continuous $U(1)$ symmetry. For a large enough but finite $eta$, the scaling function and critical exponents are derived analytically and verified numerically, from which the universality class of the model is identified.
Various quantum phase transitions in the anisotropic Rabi-Stark model with both the nonlinear Stark coupling and the linear dipole coupling between a two-level system and a single-mode cavity are studied in this work. The first-order quantum phase transitions are detected by the level crossing of the ground-state and the first-excited state with the help of the pole structure of the transcendental functions derived by the Bogoliubov operators approach. As the nonlinear Stark coupling is the same as the cavity frequency, this model can be solved by mapping to an effective quantum oscillator. All energy levels close at the critical coupling in this case, indicating continuous quantum phase transitions. The critical gap exponent is independent of the anisotropy as long as the counter-rotating wave coupling is present, but essentially changed if the counter-rotating wave coupling disappears completely. It is suggested that the gapless Goldstone mode excitations could appear above a critical coupling in the present model in the rotating-wave approximation.
The out-of-time-order correlators (OTOCs) is used to study the quantum phase transitions (QPTs) between the normal phase and the superradiant phase in the Rabi and few-body Dicke models with large frequency ratio of theatomic level splitting to the single-mode electromagnetic radiation field frequency. The focus is on the OTOC thermally averaged with infinite temperature, which is an experimentally feasible quantity. It is shown that thecritical points can be identified by long-time averaging of the OTOC via observing its local minimum behavior. More importantly, the scaling laws of the OTOC for QPTs are revealed by studying the experimentally accessible conditions with finite frequency ratio and finite number of atoms in the studied models. The critical exponents extracted from the scaling laws of OTOC indicate that the QPTs in the Rabi and Dicke models belong to the same universality class.
The two-mode quantum Rabi model with bilinear coupling is studied using extended squeezed states. We derive $G$-functions for each Bargmann index $q$% . They share a common structure with the $G$-function of the one-photon and two-photon quantum Rabi models. The regular spectrum is given by zeros of the $G$-function while the conditions for the presence of doubly degenerate (exceptional) eigenvalues are obtained in closed form through the lifting property. The simple singularity structure of the $G$-function allows to draw conclusions about the distribution of eigenvalues along the real axis and to understand the spectral collapse phenomenon when the coupling reaches a critical value.
We employ a polaron picture to investigate the properties of the two-photon quantum Rabi model (QRM), which describes a two-level or spin-half system coupled with a single bosonic mode by a two-photon process. In the polaron picture, the coupling in the two-photon process leads to spin-related asymmetry so that the original single bosonic mode splits into two separated frequency modes for the opposite spins, which correspond to two textit{bare} polarons. Furthermore, the tunneling causes these two bare polarons to exchange their components with each other, thus leading to additional textit{induced} polarons. According to this picture, the variational ground-state wave function of the two-photon QRM can be correctly constructed, with the ground-state energy and other physical observables in good agreement with the exact numerics in all the coupling regimes. Furthermore, generalization to multiple induced polarons involving higher orders in the tunneling effect provides a systematic way to yield a rapid convergence in accuracy even around the difficult spectral collapse point. In addition, the polaron picture provides a distinctive understanding of the spectral collapse behavior, that is about the existence of discrete energy levels apart from the collapsed spectrum at the spectral collapse point. This work illustrates that the polaron picture is helpful to capture the key physics in this nonlinear light-matter interaction model and indicates that this method can be applicable to more complicated QRM-related models.
We establish a set of nonequilibrium quantum phase transitions in the Ising model driven under monochromatic nonadiabatic modulation of the transverse field. We show that besides the Ising-like critical behavior, the system exhibits an anisotropic transition which is absent in equilibrium. The nonequilibrium quantum phases correspond to states which are synchronized with the external control in the long-time dynamics.