Electronic transport is at the heart of many phenomena in condensed matter physics and material science. Magnetic imaging is a non-invasive tool for detecting electric current in materials and devices. A two-dimensional current density can be reconstructed from an image of a single component of the magnetic field produced by the current. In this work, we approach the reconstruction problem in the framework of Bayesian inference, i.e. we solve for the most likely current density given an image obtained by a magnetic probe. To enforce a sensible current density priors are used to associate a cost with unphysical features such as pixel-to-pixel oscillations or current outside the device boundary. Beyond previous work, our approach does not require analytically tractable priors and therefore creates flexibility to use priors that have not been explored in the context of current reconstruction. Here, we implement several such priors that have desirable properties. A challenging aspect of imposing a prior is choosing the optimal strength. We describe an empirical way to determine the appropriate strength of the prior. We test our approach on numerically generated examples. Our code is released in an open-source texttt{python} package called texttt{pysquid}.