No Arabic abstract
We present new measurements of the cosmic cold molecular gas evolution out to redshift 6 based on systematic mining of the ALMA public archive in the COSMOS deep field (A3COSMOS). Our A3COSMOS dataset contains ~700 galaxies (0.3 < z < 6) with high-confidence ALMA detections in the (sub-)millimeter continuum and multi-wavelength spectral energy distributions (SEDs). Multiple gas mass calibration methods are compared and biases in band
The rich information on (sub)millimeter dust continuum emission from distant galaxies in the public Atacama Large Millimeter/submillimeter Array (ALMA) archive is contained in thousands of inhomogeneous observations from individual PI-led programs. To increase the usability of these data for studies deepening our understanding of galaxy evolution, we have developed automated mining pipelines for the ALMA archive in the COSMOS field (A3COSMOS) that efficiently exploit the available information for large numbers of galaxies across cosmic time and keep the data products in sync with the increasing public ALMA archive: (a) a dedicated ALMA continuum imaging pipeline, (b) two complementary photometry pipelines for both blind source extraction and prior source fitting, (c) a counterpart association pipeline utilizing the multiwavelength data available (including quality assessment based on machine-learning techniques), (d) an assessment of potential (sub)millimeter line contribution to the measured ALMA continuum, and (e) extensive simulations to provide statistical corrections to biases and uncertainties in the ALMA continuum measurements. Application of these tools yields photometry catalogs with ~1000 (sub)millimeter detections (spurious fraction ~8%-12%) from over 1500 individual ALMA continuum images. Combined with ancillary photometric and redshift catalogs and the above quality assessments, we provide robust information on redshift, stellar mass, and star formation rate for ~700 galaxies at redshifts 0.5-6 in the COSMOS field (with undetermined selection function). The ALMA photometric measurements and galaxy properties are released publicly within our blind extraction, prior fitting, and galaxy property catalogs, plus the images. These products will be updated on a regular basis in the future.
We study the properties of the cold gas component of the interstellar medium of the Herschel Reference Survey, a complete volume-limited (15<D<25 Mpc), K-band-selected sample of galaxies spanning a wide range in morphological type (from E to Im) and stellar mass (10^9<M*<10^11 Mo). The multifrequency data in our hands are used to trace the molecular gas mass distribution and the main scaling relations of the sample, which put strong constraints on galaxy formation simulations. We extend the main scaling relations concerning the total and the molecular gas component determined for massive galaxies (M* > 10^10 Mo) from the COLD GASS survey down to stellar masses M* ~ 10^9 Mo. As scaling variables we use M*, the stellar surface density mu*, the specific star formation rate SSFR, and the metallicity of the target galaxies. By comparing molecular gas masses determined using a constant or a luminosity dependent conversion factor, we estimate the robustness of these scaling relations on the very uncertain assumptions used to transform CO line intensities into molecular gas masses. The molecular gas distribution of a K-band-selected sample is different from that of a far-infrared-selected sample since it includes a significantly smaller number of objects with M(H2) < 6 10^9 Mo. In spiral galaxies the molecular gas phase is only 25-30% of the atomic gas. The analysis also indicates that the slope of the main scaling relations depends on the adopted conversion factor. Among the sampled relations, all those concerning M(gas)/M* are statistically significant and show little variation with X_CO. We observe a significant correlation between M(H2)/M* and SSFR, M(H2)/M(HI) and mu*, M(H2)/M(HI), and 12+log(O/H) regardless of the adopted X_CO. The total and molecular gas consumption timescales are anticorrelated with the SSFR.
We present the 3 mm wavelength spectra of 28 local galaxy merger remnants obtained with the Large Millimeter Telescope. Fifteen molecular lines from 13 different molecular species and isotopologues were identified, and 21 out of 28 sources were detected in one or more molecular lines. On average, the line ratios of the dense gas tracers, such as HCN (1-0) and HCO$^{+}$(1-0), to $^{13}$CO (1-0) are 3-4 times higher in ultra/luminous infrared galaxies (U/LIRGs) than in non-LIRGs in our sample. These high line ratios could be explained by the deficiency of $^{13}$CO and high dense gas fractions suggested by high HCN (1-0)/$^{12}$CO (1-0) ratios. We calculate the IR-to-HCN (1-0) luminosity ratio as a proxy of the dense gas star formation efficiency. There is no correlation between the IR/HCN ratio and the IR luminosity, while the IR/HCN ratio varies from source to source (1.1-6.5) $times 10^{3}$ $L_{odot}$/(K km s$^{-1}$ pc$^{2}$). Compared with the control sample, we find that the average IR/HCN ratio of the merger remnants is higher by a factor of 2-3 than those of the early/mid-stage mergers and non-merging LIRGs, and it is comparable to that of the late-stage mergers. The IR-to-$^{12}$CO (1-0) ratios show a similar trend to the IR/HCN ratios. These results suggest that star formation efficiency is enhanced by the merging process and maintained at high levels even after the final coalescence. The dynamical interactions and mergers could change the star formation mode and continue to impact the star formation properties of the gas in the post-merger phase.
The PAU Survey (PAUS) is an innovative photometric survey with 40 narrow bands at the William Herschel Telescope (WHT). The narrow bands are spaced at 100AA intervals covering the range 4500AA to 8500AA and, in combination with standard broad bands, enable excellent redshift precision. This paper describes the technique, galaxy templates and additional photometric calibration used to determine early photometric redshifts from PAUS. Using BCNz2, a new photometric redshift code developed for this purpose, we characterise the photometric redshift performance using PAUS data on the COSMOS field. Comparison to secure spectra from zCOSMOS DR3 shows that PAUS achieves $sigma_{68} /(1+z) = 0.0037$ to $i_{mathrm{AB}} < 22.5$ when selecting the best 50% of the sources based on a photometric redshift quality cut. Furthermore, a higher photo-z precision ($sigma_{68}/(1+z) sim 0.001$) is obtained for a bright and high quality selection, which is driven by the identification of emission lines. We conclude that PAUS meets its design goals, opening up a hitherto uncharted regime of deep, wide, and dense galaxy survey with precise redshifts that will provide unique insights into the formation, evolution and clustering of galaxies, as well as their intrinsic alignments.
We study the molecular gas properties of high-$z$ galaxies observed in the ALMA Spectroscopic Survey (ASPECS) that targets a $sim1$ arcmin$^2$ region in the Hubble Ultra Deep Field (UDF), a blind survey of CO emission (tracing molecular gas) in the 3mm and 1mm bands. Of a total of 1302 galaxies in the field, 56 have spectroscopic redshifts and correspondingly well-defined physical properties. Among these, 11 have infrared luminosities $L_{rm{}IR}>10^{11}$ L$_odot$, i.e. a detection in CO emission was expected. Out these, 7 are detected at various significance in CO, and 4 are undetected in CO emission. In the CO-detected sources, we find CO excitation conditions that are lower than typically found in starburst/SMG/QSO environments. We use the CO luminosities (including limits for non-detections) to derive molecular gas masses. We discuss our findings in context of previous molecular gas observations at high redshift (star-formation law, gas depletion times, gas fractions): The CO-detected galaxies in the UDF tend to reside on the low-$L_{rm{}IR}$ envelope of the scatter in the $L_{rm{}IR}-L_{rm{}CO}$ relation, but exceptions exist. For the CO-detected sources, we find an average depletion time of $sim$ 1 Gyr, with significant scatter. The average molecular-to-stellar mass ratio ($M_{rm{}H2}$/$M_*$) is consistent with earlier measurements of main sequence galaxies at these redshifts, and again shows large variations among sources. In some cases, we also measure dust continuum emission. On average, the dust-based estimates of the molecular gas are a factor $sim$2-5$times$ smaller than those based on CO. Accounting for detections as well as non-detections, we find large diversity in the molecular gas properties of the high-redshift galaxies covered by ASPECS.