No Arabic abstract
The interaction rate of an ultrarelativistic active neutrino at a temperature below the electroweak crossover plays a role in leptogenesis scenarios based on oscillations between active neutrinos and GeV-scale sterile neutrinos. By making use of a Euclideanization property of a thermal light-cone correlator, we determine the $O(g)$ correction to such an interaction rate in the high-temperature limit $pi T gg m_W$, finding a $sim 15 ... 40%$ reduction. For a benchmark point, this NLO correction decreases the lepton asymmetries produced by $sim 1%$.
We report on a recent next-to-leading order perturbative determination of the dilepton rate from a hot QCD plasma for frequency and momentum of the order of the temperature and for much smaller invariant mass $Msim gT$. We briefly review the calculation, which generalizes the previous one for the photon case ($M=0$). We then analyze the consequences of the new calculation for the extraction of the photon rate from the small mass dilepton measurements. We then review a recent NLO determination at large $M$ and we show how to match and merge its results with the low-mass ones, resulting in a single rate which is NLO-accurate over the phenomenologically relevant region.
We present a computation, within weakly-coupled thermal QCD, of the production rate of low invariant mass ($M^2 sim g^2 T^2$) dileptons, at next-to-leading order (NLO) in the coupling (which is $O(g^3 e^2 T^2)$). This involves extending the NLO calculation of the photon rate which we recently presented to the case of small nonzero photon invariant mass. Numerical results are discussed and tabulated forms and code are provided for inclusion in hydrodynamical models. We find that NLO corrections can increase the dilepton rate by up to 30-40% relative to leading order. We find that the electromagnetic response of the plasma for real photons and for small invariant mass but high energy dilepton pairs (e.g., $M^2 < (300:mathrm{MeV})^2$ but $p_T > 1 : mathrm{GeV}$) are close enough that dilepton pair measurements really can serve as Ersatz photon measurements. We also present a matching a la Ghisoiu and Laine between our results and results at larger invariant masses.
The production rate of right-handed neutrinos from a Standard Model plasma at a temperature above a hundred GeV has previously been evaluated up to NLO in Standard Model couplings (g ~ 2/3) in relativistic (M ~ pi T) and non-relativistic regimes (M >> pi T), and up to LO in an ultrarelativistic regime (M < gT). The last result necessitates an all-orders resummation of the loop expansion, accounting for multiple soft scatterings of the nearly light-like particles participating in 1 <-> 2 reactions. In this paper we suggest how the regimes can be interpolated into a result applicable for any right-handed neutrino mass and at all temperatures above 160 GeV. The results can also be used for determining the lepton number washout rate in models containing right-handed neutrinos. Numerical results are given in a tabulated form permitting for their incorporation into leptogenesis codes. We note that due to effects from soft Higgs bosons there is a narrow intermediate regime around M ~ g^{1/2} T in which our interpolation is phenomenological and a more precise study would be welcome.
We study non-standard interactions (NSIs) at reactor neutrino experiments, and in particular, the mimicking effects on theta_13. We present generic formulas for oscillation probabilities including NSIs from sources and detectors. Instructive mappings between the fundamental leptonic mixing parameters and the effective leptonic mixing parameters are established. In addition, NSI corrections to the mixing angles theta_13 and theta_12 are discussed in detailed. Finally, we show that, even for a vanishing theta_13, an oscillation phenomenon may still be observed in future short baseline reactor neutrino experiments, such as Double Chooz and Daya Bay, due to the existences of NSIs.
FASER$ u$ at the CERN Large Hadron Collider (LHC) is designed to directly detect collider neutrinos for the first time and study their cross sections at TeV energies, where no such measurements currently exist. In 2018, a pilot detector employing emulsion films was installed in the far-forward region of ATLAS, 480 m from the interaction point, and collected 12.2 fb$^{-1}$ of proton-proton collision data at a center-of-mass energy of 13 TeV. We describe the analysis of this pilot run data and the observation of the first neutrino interaction candidates at the LHC. This milestone paves the way for high-energy neutrino measurements at current and future colliders.