Do you want to publish a course? Click here

Deep learning is adaptive to intrinsic dimensionality of model smoothness in anisotropic Besov space

106   0   0.0 ( 0 )
 Added by Taiji Suzuki
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Deep learning has exhibited superior performance for various tasks, especially for high-dimensional datasets, such as images. To understand this property, we investigate the approximation and estimation ability of deep learning on {it anisotropic Besov spaces}. The anisotropic Besov space is characterized by direction-dependent smoothness and includes several function classes that have been investigated thus far. We demonstrate that the approximation error and estimation error of deep learning only depend on the average value of the smoothness parameters in all directions. Consequently, the curse of dimensionality can be avoided if the smoothness of the target function is highly anisotropic. Unlike existing studies, our analysis does not require a low-dimensional structure of the input data. We also investigate the minimax optimality of deep learning and compare its performance with that of the kernel method (more generally, linear estimators). The results show that deep learning has better dependence on the input dimensionality if the target function possesses anisotropic smoothness, and it achieves an adaptive rate for functions with spatially inhomogeneous smoothness.



rate research

Read More

170 - Taiji Suzuki 2018
Deep learning has shown high performances in various types of tasks from visual recognition to natural language processing, which indicates superior flexibility and adaptivity of deep learning. To understand this phenomenon theoretically, we develop a new approximation and estimation error analysis of deep learning with the ReLU activation for functions in a Besov space and its variant with mixed smoothness. The Besov space is a considerably general function space including the Holder space and Sobolev space, and especially can capture spatial inhomogeneity of smoothness. Through the analysis in the Besov space, it is shown that deep learning can achieve the minimax optimal rate and outperform any non-adaptive (linear) estimator such as kernel ridge regression, which shows that deep learning has higher adaptivity to the spatial inhomogeneity of the target function than other estimators such as linear ones. In addition to this, it is shown that deep learning can avoid the curse of dimensionality if the target function is in a mixed smooth Besov space. We also show that the dependency of the convergence rate on the dimensionality is tight due to its minimax optimality. These results support high adaptivity of deep learning and its superior ability as a feature extractor.
294 - Pengzhan Jin , Lu Lu , Yifa Tang 2019
The accuracy of deep learning, i.e., deep neural networks, can be characterized by dividing the total error into three main types: approximation error, optimization error, and generalization error. Whereas there are some satisfactory answers to the problems of approximation and optimization, much less is known about the theory of generalization. Most existing theoretical works for generalization fail to explain the performance of neural networks in practice. To derive a meaningful bound, we study the generalization error of neural networks for classification problems in terms of data distribution and neural network smoothness. We introduce the cover complexity (CC) to measure the difficulty of learning a data set and the inverse of the modulus of continuity to quantify neural network smoothness. A quantitative bound for expected accuracy/error is derived by considering both the CC and neural network smoothness. Although most of the analysis is general and not specific to neural networks, we validate our theoretical assumptions and results numerically for neural networks by several data sets of images. The numerical results confirm that the expected error of trained networks scaled with the square root of the number of classes has a linear relationship with respect to the CC. We also observe a clear consistency between test loss and neural network smoothness during the training process. In addition, we demonstrate empirically that the neural network smoothness decreases when the network size increases whereas the smoothness is insensitive to training dataset size.
We present a simple theoretical framework, and corresponding practical procedures, for comparing probabilistic models on real data in a traditional machine learning setting. This framework is based on the theory of proper scoring rules, but requires only basic algebra and probability theory to understand and verify. The theoretical concepts presented are well-studied, primarily in the statistics literature. The goal of this paper is to advocate their wider adoption for performance evaluation in empirical machine learning.
Marginal-likelihood based model-selection, even though promising, is rarely used in deep learning due to estimation difficulties. Instead, most approaches rely on validation data, which may not be readily available. In this work, we present a scalable marginal-likelihood estimation method to select both hyperparameters and network architectures, based on the training data alone. Some hyperparameters can be estimated online during training, simplifying the procedure. Our marginal-likelihood estimate is based on Laplaces method and Gauss-Newton approximations to the Hessian, and it outperforms cross-validation and manual-tuning on standard regression and image classification datasets, especially in terms of calibration and out-of-distribution detection. Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable (e.g., in nonstationary settings).
In transfer learning, we wish to make inference about a target population when we have access to data both from the distribution itself, and from a different but related source distribution. We introduce a flexible framework for transfer learning in the context of binary classification, allowing for covariate-dependent relationships between the source and target distributions that are not required to preserve the Bayes decision boundary. Our main contributions are to derive the minimax optimal rates of convergence (up to poly-logarithmic factors) in this problem, and show that the optimal rate can be achieved by an algorithm that adapts to key aspects of the unknown transfer relationship, as well as the smoothness and tail parameters of our distributional classes. This optimal rate turns out to have several regimes, depending on the interplay between the relative sample sizes and the strength of the transfer relationship, and our algorithm achieves optimality by careful, decision tree-based calibration of local nearest-neighbour procedures.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا