No Arabic abstract
A distributed graph algorithm is basically an algorithm where every node of a graph can look at its neighborhood at some distance in the graph and chose its output. As distributed environment are subject to faults, an important issue is to be able to check that the output is correct, or in general that the network is in proper configuration with respect to some predicate. One would like this checking to be very local, to avoid using too much resources. Unfortunately most predicates cannot be checked this way, and that is where certification comes into play. Local certification (also known as proof-labeling schemes, locally checkable proofs or distributed verification) consists in assigning labels to the nodes, that certify that the configuration is correct. There are several point of view on this topic: it can be seen as a part of self-stabilizing algorithms, as labeling problem, or as a non-deterministic distributed decision. This paper is an introduction to the domain of local certification, giving an overview of the history, the techniques and the current research directions.
Naor, Parter, and Yogev (SODA 2020) have recently demonstrated the existence of a emph{distributed interactive proof} for planarity (i.e., for certifying that a network is planar), using a sophisticated generic technique for constructing distributed IP protocols based on sequential IP protocols. The interactive proof for planarity is based on a distributed certification of the correct execution of any given sequential linear-time algorithm for planarity testing. It involves three interactions between the prover and the randomized distributed verifier (i.e., it is a dMAM/ protocol), and uses small certificates, on $O(log n)$ bits in $n$-node networks. We show that a single interaction from the prover suffices, and randomization is unecessary, by providing an explicit description of a emph{proof-labeling scheme} for planarity, still using certificates on just $O(log n)$ bits. We also show that there are no proof-labeling schemes -- in fact, even no emph{locally checkable proofs} -- for planarity using certificates on $o(log n)$ bits.
A distributed proof (also known as local certification, or proof-labeling scheme) is a mechanism to certify that the solution to a graph problem is correct. It takes the form of an assignment of labels to the nodes, that can be checked locally. There exists such a proof for the minimum spanning tree problem, using $O(log n log W)$ bit labels (where $n$ is the number of nodes in the graph, and $W$ is the largest weight of an edge). This is due to Korman and Kutten who describe it in concise and formal manner in [Korman and Kutten 07]. In this note, we propose a more intuitive description of the result, as well as a gentle introduction to the problem.
Local certification consists in assigning labels to the nodes of a network to certify that some given property is satisfied, in such a way that the labels can be checked locally. In the last few years, certification of graph classes received a considerable attention. The goal is to certify that a graph $G$ belongs to a given graph class~$mathcal{G}$. Such certifications with labels of size $O(log n)$ (where $n$ is the size of the network) exist for trees, planar graphs and graphs embedded on surfaces. Feuilloley et al. ask if this can be extended to any class of graphs defined by a finite set of forbidden minors. In this work, we develop new decomposition tools for graph certification, and apply them to show that for every small enough minor $H$, $H$-minor-free graphs can indeed be certified with labels of size $O(log n)$. We also show matching lower bounds with a simple new proof technique.
Naor, Parter, and Yogev [SODA 2020] recently designed a compiler for automatically translating standard centralized interactive protocols to distributed interactive protocols, as introduced by Kol, Oshman, and Saxena [PODC 2018]. In particular, by using this compiler, every linear-time algorithm for deciding the membership to some fixed graph class can be translated into a $mathsf{dMAM}(O(log n))$ protocol for this class, that is, a distributed interactive protocol with $O(log n)$-bit proof size in $n$-node graphs, and three interactions between the (centralizer) computationally-unbounded but non-trustable prover Merlin, and the (decentralized) randomized computationally-limited verifier Arthur. As a corollary, there is a $mathsf{dMAM}(O(log n))$ protocol for the class of planar graphs, as well as for the class of graphs with bounded genus. We show that there exists a distributed interactive protocol for the class of graphs with bounded genus performing just a single interaction, from the prover to the verifier, yet preserving proof size of $O(log n)$ bits. This result also holds for the class of graphs with bounded demi-genus, that is, graphs that can be embedded on a non-orientable surface of bounded genus. The interactive protocols described in this paper are actually proof-labeling schemes, i.e., a subclass of interactive protocols, previously introduced by Korman, Kutten, and Peleg [PODC 2005]. In particular, these schemes do not require any randomization from the verifier, and the proofs may often be computed a priori, at low cost, by the nodes themselves. Our results thus extend the recent proof-labeling scheme for planar graphs by Feuilloley et al. [PODC 2020], to graphs of bounded genus, and to graphs of bounded demigenus.
We show that there is no deterministic local algorithm (constant-time distributed graph algorithm) that finds a $(7-epsilon)$-approximation of a minimum dominating set on planar graphs, for any positive constant $epsilon$. In prior work, the best lower bound on the approximation ratio has been $5-epsilon$; there is also an upper bound of $52$.