Do you want to publish a course? Click here

FontGAN: A Unified Generative Framework for Chinese Character Stylization and De-stylization

107   0   0.0 ( 0 )
 Added by Xiyan Liu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Chinese character synthesis involves two related aspects, i.e., style maintenance and content consistency. Although some methods have achieved remarkable success in synthesizing a character with specified style from standard font, how to map characters to a specified style domain without losing their identifiability remains very challenging. In this paper, we propose a novel model named FontGAN, which integrates the character stylization and de-stylization into a unified framework. In our model, we decouple character images into style representation and content representation, which facilitates more precise control of these two types of variables, thereby improving the quality of the generated results. We also introduce two modules, namely, font consistency module (FCM) and content prior module (CPM). FCM exploits a category guided Kullback-Leibler loss to embedding the style representation into different Gaussian distributions. It constrains the characters of the same font in the training set globally. On the other hand, it enables our model to obtain style variables through sampling in testing phase. CPM provides content prior for the model to guide the content encoding process and alleviates the problem of stroke deficiency during de-stylization. Extensive experimental results on character stylization and de-stylization have demonstrated the effectiveness of our method.

rate research

Read More

We present a 3D stylization algorithm that can turn an input shape into the style of a cube while maintaining the content of the original shape. The key insight is that cubic style sculptures can be captured by the as-rigid-as-possible energy with an l1-regularization on rotated surface normals. Minimizing this energy naturally leads to a detail-preserving, cubic geometry. Our optimization can be solved efficiently without any mesh surgery. Our method serves as a non-realistic modeling tool where one can incorporate many artistic controls to create stylized geometries.
Exemplar-based portrait stylization is widely attractive and highly desired. Despite recent successes, it remains challenging, especially when considering both texture and geometric styles. In this paper, we present the first framework for one-shot 3D portrait style transfer, which can generate 3D face models with both the geometry exaggerated and the texture stylized while preserving the identity from the original content. It requires only one arbitrary style image instead of a large set of training examples for a particular style, provides geometry and texture outputs that are fully parameterized and disentangled, and enables further graphics applications with the 3D representations. The framework consists of two stages. In the first geometric style transfer stage, we use facial landmark translation to capture the coarse geometry style and guide the deformation of the dense 3D face geometry. In the second texture style transfer stage, we focus on performing style transfer on the canonical texture by adopting a differentiable renderer to optimize the texture in a multi-view framework. Experiments show that our method achieves robustly good results on different artistic styles and outperforms existing methods. We also demonstrate the advantages of our method via various 2D and 3D graphics applications. Project page is https://halfjoe.github.io/projs/3DPS/index.html.
Neural style transfer models have been used to stylize an ordinary video to specific styles. To ensure temporal inconsistency between the frames of the stylized video, a common approach is to estimate the optic flow of the pixels in the original video and make the generated pixels match the estimated optical flow. This is achieved by minimizing an optical flow-based (OFB) loss during model training. However, optical flow estimation is itself a challenging task, particularly in complex scenes. In addition, it incurs a high computational cost. We propose a much simpler temporal loss called the frame difference-based (FDB) loss to solve the temporal inconsistency problem. It is defined as the distance between the difference between the stylized frames and the difference between the original frames. The differences between the two frames are measured in both the pixel space and the feature space specified by the convolutional neural networks. A set of human behavior experiments involving 62 subjects with 25,600 votes showed that the performance of the proposed FDB loss matched that of the OFB loss. The performance was measured by subjective evaluation of stability and stylization quality of the generated videos on two typical video stylization models. The results suggest that the proposed FDB loss is a strong alternative to the commonly used OFB loss for video stylization.
Domain generalization aims to enhance the model robustness against domain shift without accessing the target domain. Since the available source domains for training are limited, recent approaches focus on generating samples of novel domains. Nevertheless, they either struggle with the optimization problem when synthesizing abundant domains or cause the distortion of class semantics. To these ends, we propose a novel domain generalization framework where feature statistics are utilized for stylizing original features to ones with novel domain properties. To preserve class information during stylization, we first decompose features into high and low frequency components. Afterward, we stylize the low frequency components with the novel domain styles sampled from the manipulated statistics, while preserving the shape cues in high frequency ones. As the final step, we re-merge both components to synthesize novel domain features. To enhance domain robustness, we utilize the stylized features to maintain the model consistency in terms of features as well as outputs. We achieve the feature consistency with the proposed domain-aware supervised contrastive loss, which ensures domain invariance while increasing class discriminability. Experimental results demonstrate the effectiveness of the proposed feature stylization and the domain-aware contrastive loss. Through quantitative comparisons, we verify the lead of our method upon existing state-of-the-art methods on two benchmarks, PACS and Office-Home.
Convolutional Neural Networks (CNNs) show impressive performance in the standard classification setting where training and testing data are drawn i.i.d. from a given domain. However, CNNs do not readily generalize to new domains with different statistics, a setting that is simple for humans. In this work, we address the Domain Generalization problem, where the classifier must generalize to an unknown target domain. Inspired by recent works that have shown a difference in biases between CNNs and humans, we demonstrate an extremely simple yet effective method, namely correcting this bias by augmenting the dataset with stylized images. In contrast with existing stylization works, which use external data sources such as art, we further introduce a method that is entirely in-domain using no such extra sources of data. We provide a detailed analysis as to the mechanism by which the method works, verifying our claim that it changes the shape/texture bias, and demonstrate results surpassing or comparable to the state of the arts that utilize much more complex methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا