Do you want to publish a course? Click here

Coherent elastic neutrino-nucleus scattering in multi-ton scale dark matter experiments: Classification of vector and scalar interactions new physics signals

74   0   0.0 ( 0 )
 Added by Diego Aristizabal
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We classify new physics signals in coherent elastic neutrino-nucleus scattering (CE$ u$NS) processes induced by $^8$B solar neutrinos in multi-ton xenon dark matter (DM) detectors. Our analysis focuses on vector and scalar interactions in the effective and light mediator limits after considering the constraints emerging from the recent COHERENT data and neutrino masses. In both cases we identify a region where measurements of the event spectrum alone suffice to establish whether the new physics signal is related with vector or scalar couplings. We identify as well a region where measurements of the recoil spectrum are required so to establish the nature of the new interaction, and categorize the spectral features that enable distinguishing the vector from the scalar case. We demonstrate that measurements of the isospin nature of the new interaction and thereby removal of isospin related degeneracies are possible by combining independent measurements from two different detectors. We also comment on the status of searches for vector and scalar interactions for on-going multi-ton year xenon experiments.



rate research

Read More

121 - N. Van Dessel , V. Pandey , H. Ray 2020
The prospects of extracting new physics signals in a coherent elastic neutrino-nucleus scattering (CE$ u$NS) process are limited by the precision with which the underlying nuclear structure physics, embedded in the weak nuclear form factor, is known. We present microscopic nuclear structure physics calculations of charge and weak nuclear form factors and CE$ u$NS cross sections on $^{12}$C, $^{16}$O, $^{40}$Ar, $^{56}$Fe and $^{208}$Pb nuclei. We obtain the proton and neutron densities, and charge and weak form factors by solving Hartree-Fock equations with a Skyrme (SkE2) nuclear potential. We validate our approach by comparing $^{208}$Pb and $^{40}$Ar charge form factor predictions with elastic electron scattering data. In view of the worldwide interest in liquid-argon based neutrino and dark matter experiments, we pay special attention to the $^{40}$Ar nucleus and make predictions for the $^{40}$Ar weak form factor and the CE$ u$NS cross sections. Furthermore, we attempt to gauge the level of theoretical uncertainty pertaining to the description of the $^{40}$Ar form factor and CE$ u$NS cross sections by comparing relative differences between recent microscopic nuclear theory and widely-used phenomenological form factor predictions. Future precision measurements of CE$ u$NS will potentially help in constraining these nuclear structure details that will in turn improve prospects of extracting new physics.
We study the sensitivity of detectors with directional sensitivity to coherent elastic neutrino-nucleus scattering (CE$ u$NS), and how these detectors complement measurements of the nuclear recoil energy. We consider stopped pion and reactor neutrino sources, and use gaseous helium and fluorine as examples of detector material. We generate Standard Model predictions, and compare to scenarios that include new, light vector or scalar mediators. We show that directional detectors can provide valuable additional information in discerning new physics, and we identify prominent spectral features in both the angular and the recoil energy spectrum for light mediators, even for nuclear recoil energy thresholds as high as $sim 50$ keV. Combined with energy and timing information, directional information can play an important role in extracting new physics from CE$ u$NS experiments.
Atomic Parity Violation (APV) is usually quantified in terms of the weak nuclear charge $Q_W$ of a nucleus, which depends on the coupling strength between the atomic electrons and quarks. In this work, we review the importance of APV to probing new physics using effective field theory. Furthermore, using $SU(2)$ invariance, we correlate our findings with those from neutrino-nucleus coherent scattering. Moreover, we investigate signs of parity violation in polarized electron scattering and show how precise measurements on the Weinberg angle, $sin theta_W$, will give rise to competitive bounds on light mediators over a wide range of masses and interactions strength. Lastly, apply our bounds to several models namely, Dark Z, Two Higgs Doublet Model-$U(1)_X$ and 3-3-1, considering both light and heavy mediator regimes.
87 - A. Parada 2019
In several extensions of the Standard Model of Particle Physics (SMPP), the neutrinos acquire electromagnetic properties such as the electric millicharge. Theoretical and experimental bounds have been reported in the literature for this parameter. In this work, we first carried out a statistical analysis by using data from reactor neutrino experiments, which include elastic neutrino-electron scattering (ENES) processes, in order to obtain both individual and combined limits on the neutrino electric millicharge (NEM). Then we performed a similar calculation to show a estimate of the sensitivity of future experiments of reactor neutrinos to the NEM, by involving coherent elastic neutrino-nucleus scattering (CENNS). In the first case, the constraints achieved from the combination of several experiments are $-1.1times 10^{-12}e < q_{ u} < 9.3times 10^{-13}e$ ($90%$ C.L.), and in the second scenario we obtained the bounds $-1.8times 10^{-14}e < q_{ u} < 1.8times 10^{-14}e$ ($90%$ C.L.). As we will show here, these combined analyses of different experimental data can lead to stronger constraints than those based on individual analysis. Where CENNS interactions would stand out as an important alternative to improve the current limits on NEM.
Future dark matter (DM) direct detection searches will be subject to irreducible neutrino backgrounds that will challenge the identification of an actual WIMP signal in experiments without directionality sensitivity. We study the impact of neutrino-quark non-standard interactions (NSI) on this background, assuming the constraints from neutrino oscillations and the recent COHERENT experiment data, which are relevant for NSI mediated by light mediators, $m_{rm med} lesssim{cal O}$(GeV). We calculate the expected number of neutrino-nucleus elastic scattering events in a Xe-based ton-size dark matter detector, including solar neutrino fluxes from the $pp$ chain and CNO cycle as well as sub-GeV atmospheric fluxes and taking into account NSI effects in both propagation and detection. We find that sizable deviations from the standard model expectation are possible, but are more pronounced for flavor-diagonal couplings, in particular for electron neutrinos. We show that neutrino NSI can enhance or deplete the neutrino-nucleus event rate, which may impact DM searches in multi-ton detectors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا