Do you want to publish a course? Click here

Numerical investigation of the electrical conductivity of irradiated graphene

101   0   0.0 ( 0 )
 Added by Dmitry Kolesnikov
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Transport properties of irradiated graphene (electrical conductivity and mobility) are numerically investigated using the real-space Kubo formalism. A micrometer-sized system consisting of millions of atoms with nanopores of various sizes and concentrations is described. Electrical conductivity and mobility as a function of carrier (hole) density are calculated to provide possible comparisons with experiments.



rate research

Read More

By using the real-space Green-Kubo formalism we study numerically the electron transport properties of low-fluorinated graphene. At low temperatures the diffuse transport regime is expected to be prevalent, and we found a pronounced electron-hole asymmetry in electrical conductivity as a result of quasi-resonant scattering on the localized states. For the finite temperatures in the variable-range hopping transport regime the interpretation of numerical results leads to the appearance of local minima and maxima of the resistance near the energies of the localized states. A comparison with the experimental measurements of the resistance in graphene samples with various fluorination degrees is discussed.
The influence of long-term ageing (about one year) on the Raman scattering (RS) spectra and the temperature dependence of conductivity has been studied in two series of monolayer graphene samples irradiated by different doses of C$^{+}$ and Xe$^{+}$ ions. It is shown that the main result of ageing consists of changes in the intensity and position of D- and G- and 2D-lines in RS spectra and in an increase of the conductivity. The observed effects are explained in terms of an increase of the radius of the textquotedblleft activatedtextquotedblright{} area around structural defects.
We numerically investigate quantum rings in graphene and find that their electronic properties may be strongly influenced by the geometry, the edge symmetries and the structure of the corners. Energy spectra are calculated for different geometries (triangular, hexagonal and rhombus-shaped graphene rings) and edge terminations (zigzag, armchair, as well as the disordered edge of a round geometry). The states localized at the inner edges of the graphene rings describe different evolution as a function of magnetic field when compared to those localized at the outer edges. We show that these different evolutions are the reason for the formation of sub-bands of edge states energy levels, separated by gaps (anticrossings). It is evident from mapping the charge densities that the anticrossings occur due to the coupling between inner and outer edge states.
Charge carrier transport in single-layer graphene with one-dimensional charged defects is studied theoretically. Extended charged defects, considered an important factor for mobility degradation in chemically-vapor-deposited graphene, are described by a self-consistent Thomas-Fermi potential. A numerical study of electronic transport is performed by means of a time-dependent real-space Kubo approach in honeycomb lattices containing millions of carbon atoms, capturing the linear response of realistic size systems in the highly disordered regime. Our numerical calculations are complemented with a kinetic transport theory describing charge transport in the weak scattering limit. The semiclassical transport lifetimes are obtained by computing scattered amplitudes within the second Born approximation. The transport electron-hole asymmetry found in the semiclassical approach is consistent with the Kubo calculations. In the strong scattering regime, the conductivity is found to be a sublinear function of electronic density and weakly dependent on the Thomas-Fermi screening wavelength. We attribute this atypical behavior to the extended nature of one-dimensional charged defects. Our results are consistent with recent experimental reports.
A stochastic nonlinear electrical characteristic of graphene is reported. Abrupt current changes are observed from voltage sweeps between the source and drain with an on/off ratio up to 10^(3). It is found that graphene channel experience the topological change. Active radicals in an uneven graphene channel cause local changes of electrostatic potential. Simulation results based on the self-trapped electron and hole mechanism account well for the experimental data. Our findings illustrate an important issue of reliable electron transports and help for the understanding of transport properties in graphene devices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا