Do you want to publish a course? Click here

Measurement of $e^+e^-$ Momentum and Angular Distributions from Linearly Polarized Photon Collisions

211   0   0.0 ( 0 )
 Added by James Brandenburg
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The Breit-Wheeler process which produces matter and anti-matter from photon collisions is investigated experimentally through the observation of 6085 exclusive electron-positron pairs in ultra-peripheral Au+Au collisions at $sqrt{s_{_{NN}}}=200$ GeV. The measurements reveal a large fourth-order angular modulation of $cos{4Deltaphi}=(16.8pm2.5)%$ and smooth invariant mass distribution absent of vector mesons ($phi$, $omega$ and $rho$) at the experimental limit of $le 0.2%$ of the observed yields. The differential cross section as a function of $e^+e^-$ pair transverse momentum $P_perp$ peaks at low value with $sqrt{ langle P_perp^2 rangle } = 38.1pm0.9$ MeV and displays a significant centrality dependence. These features are consistent with QED calculations for the collision of linearly polarized photons quantized from the extremely strong electromagnetic fields generated by the highly charged Au nuclei at ultra-relativistic speed. The experimental results have implications for vacuum birefringence and for mapping the magnetic field which is important for emergent QCD phenomena.



rate research

Read More

We have measured the 3He(e,epp)n reaction at 2.2 GeV over a wide kinematic range. The kinetic energy distribution for `fast nucleons (p > 250 MeV/c) peaks where two nucleons each have 20% or less, and the third nucleon has most of the transferred energy. These fast pp and pn pairs are back-to-back with little momentum along the three-momentum transfer, indicating that they are spectators. Experimental and theoretical evidence indicates that we have measured distorted two-nucleon momentum distributions by striking the third nucleon and detecting the spectator correlated pair.
We report the measurement of the beam-vector and tensor asymmetries $A^V_{ed}$ and $A^T_d$ in quasielastic $(vec{e}, e^{prime}p)$ electrodisintegration of the deuteron at the MIT-Bates Linear Accelerator Center up to missing momentum of 500~MeV/c. Data were collected simultaneously over a momentum transfer range $0.1< Q^2<0.5$~(GeV/c)$^2$ with the Bates Large Acceptance Spectrometer Toroid using an internal deuterium gas target, polarized sequentially in both vector and tensor states. The data are compared with calculations. The beam-vector asymmetry $A^V_{ed}$ is found to be directly sensitive to the $D$-wave component of the deuteron and have a zero-crossing at a missing momentum of about 320~MeV/c, as predicted. The tensor asymmetry $A^T_d$ at large missing momentum is found to be dominated by the influence of the tensor force in the neutron-proton final-state interaction. The new data provide a strong constraint on theoretical models.
The enhancement of charged-particle pairs with large pseudorapidity difference and small azimuthal angle difference, often referred to as the ``ridge signal, is a phenomenon widely observed in high multiplicity proton-proton, proton-ion and deutron-ion collisions, which is not yet fully understood. In heavy-ion collisions, the hydrodynamic expansion of the Quark-Gluon Plasma is one of the possible explanations of the origin of the ridge signal. Measurements in the $e^+e^-$ collision system, without the complexities introduced by hadron structure in the initial state, can serve as a complementary probe to examine the formation of a ridge signal. The first measurement of two-particle angular correlation functions in high multiplicity $e^+e^-$ collisions at $sqrt{s}=10.52$ GeV is reported. The hadronic $e^+e^-$ annihilation data collected by the Belle detector at KEKB are used in this study. Two-particle angular correlation functions are measured over the full azimuth and large pseudorapidity intervals which are defined by either the electron beam axis or the event thrust as a function of charged particle multiplicity. The measurement in the event thrust analysis, with mostly outgoing quark pairs determining the reference axis, is sensitive to the region of additional soft gluon emissions. No significant ridge signal is observed with either coordinates analyses. Near side jet correlations appear to be absent in the thrust axis analysis. The measurements are compared to predictions from various event generators and expected to provide new constraints to the phenomenological models in the low energy regime.
The E12-14-012 experiment, performed in Jefferson Lab Hall A, has collected exclusive electron-scattering data (e,e$^prime$p) in parallel kinematics using natural argon and natural titanium targets. Here, we report the first results of the analysis of the data set corresponding to beam energy of 2,222 MeV, electron scattering angle 21.5 deg, and proton emission angle -50 deg. The differential cross sections, measured with $sim$4% uncertainty, have been studied as a function of missing energy and missing momentum, and compared to the results of Monte Carlo simulations, obtained from a model based on the Distorted Wave Impulse Approximation.
62 - G. Casini , G. Poggi , M. Bini 1999
Light charged particles emitted by the projectile-like fragment were measured in the direct and reverse collision of $^{93}$Nb and $^{116}$Sn at 25 AMeV. The experimental multiplicities of Hydrogen and Helium particles as a function of the primary mass of the emitting fragment show evidence for a correlation with net mass transfer. The ratio of Hydrogen and Helium multiplicities points to a dependence of the angular momentum sharing on the net mass transfer.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا