The mean-field Gross-Pitaevskii equation with repulsive interactions exhibits frictionless flow when stirred by an obstacle below a critical velocity. Here we go beyond the mean-field approximation to examine the influence of quantum fluctuations on this threshold behaviour in a one-dimensional Bose gas in a ring. Using the truncated Wigner approximation, we perform simulations of ensembles of trajectories where the Bose gas is stirred with a repulsive obstacle below the mean-field critical velocity. We observe the probabilistic formation of grey solitons which subsequently decay, leading to an increase in the momentum of the fluid. The formation of the first soliton leads to a soliton cascade, such that the fluid rapidly accelerates to minimise the speed difference with the obstacle. We measure the initial rate of momentum transfer, and relate it to macroscopic tunnelling between quantised flow states in the ring.