Do you want to publish a course? Click here

Ultra-relativistic astrophysics using multi-messenger observations of double neutron stars with LISA and the SKA

134   0   0.0 ( 0 )
 Added by Eric Thrane
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent work highlights that tens of Galactic double neutron stars are likely to be detectable in the millihertz band of the space-based gravitational-wave observatory, LISA. Kyutoku and Nishino point out that some of these binaries might be detectable as radio pulsars using the Square Kilometer Array (SKA). We point out that the joint LISA+SKA detection of a $f_text{gw}gtrsim$1 mHz binary, corresponding to a binary period of $lesssim$400 s, would enable precision measurements of ultra-relativistic phenomena. We show that, given plausible assumptions, multi-messenger observations of ultra-relativistic binaries can be used to constrain the neutron star equation of state with remarkable fidelity. It may be possible to measure the mass-radius relation with a precision of $approx$0.2% after 10 yr of observations with the SKA. Such a measurement would be roughly an order of magnitude more precise than possible with other proposed observations. We summarize some of the other remarkable science made possible with multi-messenger observations of millihertz binaries, and discuss the prospects for the detection of such objects.



rate research

Read More

183 - Xueli Miao , Heng Xu , Lijing Shao 2021
At present, 19 double neutron star (DNS) systems are detected by radio timing and 2 merging DNS systems are detected by kilo-hertz gravitational waves. Because of selection effects, none of them has an orbital period $P_b$ in the range of a few tens of minutes. In this paper we consider a multimessenger strategy proposed by Kyutoku et al. (2019), jointly using the Laser Interferometer Space Antenna (LISA) and the Square Kilometre Array (SKA) to detect and study Galactic pulsar-neutron star (PSR-NS) systems with $P_b sim$ 10-100 min. We assume that we will detect PSR-NS systems by this strategy. We use standard pulsar timing software to simulate times of arrival of pulse signals from these binary pulsars. We obtain the precision of timing parameters of short-orbital-period PSR-NS systems whose orbital period $P_b in (8,120),$min. We use the simulated uncertainty of the orbital decay, $dot{P}_{b}$, to predict future tests for a variety of alternative theories of gravity. We show quantitatively that highly relativistic PSR-NS systems will significantly improve the constraint on parameters of specific gravity theories in the strong field regime. We also investigate the orbital periastron advance caused by the Lense-Thirring effect in a PSR-NS system with $P_b = 8,$min, and show that the Lense-Thirring effect will be detectable to a good precision.
Soft Gamma-Ray Repeaters and Anomalous X-Ray Pulsars are extreme manifestations of the most magnetized neutron stars: magnetars. The phenomenology of their emission and spectral properties strongly support the idea that the magnetospheres of these astrophysical objects are tightly twisted in the vicinity of the star. Previous studies on equilibrium configurations have so far focused on either the internal or the external magnetic field configuration, without considering a real coupling between the two fields. Here we investigate numerical equilibrium models of magnetized neutron stars endowed with a confined twisted magnetosphere, solving the general relativistic Grad-Shafranov equation both in the interior and in the exterior of the compact object. A comprehensive study of the parameters space is provided to investigate the effects of different current distributions on the overall magnetic field structure.
Pulsar timing arrays (PTAs) are on the verge of detecting low-frequency gravitational waves (GWs) from supermassive black hole binaries (SMBHBs). With continued observations of a large sample of millisecond pulsars, PTAs will reach this major milestone within the next decade. Already, SMBHB candidates are being identified by electromagnetic surveys in ever-increasing numbers; upcoming surveys will enhance our ability to detect and verify candidates, and will be instrumental in identifying the host galaxies of GW sources. Multi-messenger (GW and electromagnetic) observations of SMBHBs will revolutionize our understanding of the co-evolution of SMBHs with their host galaxies, the dynamical interactions between binaries and their galactic environments, and the fundamental physics of accretion. Multi-messenger observations can also make SMBHBs standard sirens for cosmological distance measurements out to $zsimeq0.5$. LIGO has already ushered in breakthrough insights in our knowledge of black holes. The multi-messenger detection of SMBHBs with PTAs will be a breakthrough in the years $2020-2030$ and beyond, and prepare us for LISA to help complete our views of black hole demographics and evolution at higher redshifts.
The upcoming LISA mission offers the unique opportunity to study the Milky Way through gravitational wave radiation from Galactic binaries. Among the variety of Galactic gravitational wave sources, LISA is expected to individually resolve signals from $sim 10^5$ ultra-compact double white dwarf (DWD) binaries. DWDs detected by LISA will be distributed across the Galaxy, including regions that are hardly accessible to electromagnetic observations such as the inner part of the Galactic disc, the bulge and beyond. We quantitatively show that the large number of DWD detections will allow us to use these systems as tracers of the Milky Way potential. We demonstrate that density profiles of DWDs detected by LISA may provide constraints on the scale length parameters of the baryonic components that are both accurate and precise, with statistical errors of a few percent to $10$ percent level. Furthermore, the LISA sample is found to be sufficient to disentangle between different (commonly used) disc profiles, by well covering the disc out to sufficiently large radii. Finally, up to $sim 80$ DWDs can be detected through both electromagnetic and gravitational wave radiation. This enables multi-messenger astronomy with DWD binaries and allows one to extract their physical properties using both probes. We show that fitting the Galactic rotation curve constructed using distances inferred from gravitational waves {it and} proper motions from optical observations yield a unique and competitive estimate of the bulge mass. Instead robust results for the stellar disc mass are contingent upon knowledge of the Dark Matter content.
61 - Kathrin Egberts 2020
Multi-messenger astronomy has experienced an explosive development in the past few years. While not being a particularly young field, it has recently attracted a lot of attention by several major discoveries and unprecedented observation campaigns covering the entity of the electromagnetic spectrum as well as observations of cosmic rays, neutrinos, and gravitational waves. The exploration of synergies is in full steam and requires close cooperation between different instruments. Here I give an overview over the subject of multi-messenger astronomy and its virtues compared to classical single messenger observations, present the recent break throughs of the field, and discuss some of its organisational and technical challenges.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا