No Arabic abstract
The results of calculation of the three-loop radiative correction to the renormalization constant of fermion masses for non-abelian gauge theory interacting with fermions are presented. Dimensional regularization and the t Hooft minimal subtraction scheme are used. The method of calculation is described in detail. The renormalization group function $gamma_m$ determining the behavior of the effective mass of fermions is presented. The anomalous dimensions of fermions for QED and QCD up to three loops are given. All calculations were performed on a computer with the help of the SCHOOONSCHIP system for analytical manipulations. The present text was published in 1982 as a JINR Communication, JINR-P2-82-900 (in russian).
Light quark masses can be determined through lattice simulations in regularization invariant momentum-subtraction(RI/MOM) schemes. Subsequently, matching factors, computed in continuum perturbation theory, are used in order to convert these quark masses from a RI/MOM scheme to the MS-bar scheme. We calculate the two-loop corrections in quantum chromodynamics(QCD) to these matching factors as well as the three-loop mass anomalous dimensions for the RI/SMOM and RI/SMOM_gamma_mu schemes. These two schemes are characterized by a symmetric subtraction point. Providing the conversion factors in the two different schemes allows for a better understanding of the systematic uncertainties. The two-loop expansion coefficients of the matching factors for both schemes turn out to be small compared to the traditional RI/MOM schemes. For nf=3 quark flavors they are about 0.6-0.7% and 2%, respectively, of the leading order result at scales of about 2 GeV. Therefore, they will allow for a significant reduction of the systematic uncertainty of light quark mass determinations obtained through this approach. The determination of these matching factors requires the computation of amputated Greens functions with the insertions of quark bilinear operators. As a by-product of our calculation we also provide the corresponding results for the tensor operator.
We present the full analytic result for the three-loop angle-dependent cusp anomalous dimension in QCD. With this result, infrared divergences of planar scattering processes with massive particles can be predicted to that order. Moreover, we define a closely related quantity in terms of an effective coupling defined by the light-like cusp anomalous dimension. We find evidence that this quantity is universal for any gauge theory, and use this observation to predict the non-planar $n_{f}$-dependent terms of the four-loop cusp anomalous dimension.
We calculate the unpolarized and polarized three--loop anomalous dimensions and splitting functions $P_{rm NS}^+, P_{rm NS}^-$ and $P_{rm NS}^{rm s}$ in QCD in the $overline{sf MS}$ scheme by using the traditional method of space--like off shell massless operator matrix elements. This is a gauge--dependent framework. For the first time we also calculate the three--loop anomalous dimensions $P_{rm NS}^{rm pm tr}$ for transversity directly. We compare our results to the literature.
Three-loop vacuum integrals are an important building block for the calculation of a wide range of three-loop corrections. Until now, only results for integrals with one and two independent mass scales are known, but in the electroweak Standard Model and many extensions thereof, one often encounters more mass scales of comparable magnitude. For this reason, a numerical approach for the evaluation of three-loop vacuum integrals with arbitrary mass pattern is proposed here. Concretely, one can identify a basic set of three master integral topologies. With the help of dispersion relations, each of these can be transformed into one-dimensional or, for the most complicated case, two-dimensional integrals in terms of elementary functions, which are suitable for efficient numerical integration.
In the context of a left-right extension of the standard model of quarks and leptons with the addition of a gauged $U(1)_D$ dark symmetry, it is shown how the electron may obtain a radiative mass in one loop and two Dirac neutrinos obtain masses in three loops.