A new type of spatially coupled low-density parity-check (SC-LDPC) codes motivated by practical storage applications is presented. SC-LDPCL codes (suffix L stands for locality) can be decoded locally at the level of sub-blocks that are much smaller than the full code block, thus offering flexible access to the coded information alongside the strong reliability of the global full-block decoding. Toward that, we propose constructions of SC-LDPCL codes that allow controlling the trade-off between local and global correction performance. In addition to local and global decoding, the paper develops a density-evolution analysis for a decoding mode we call semi-global decoding, in which the decoder has access to the requested sub-block plus a prescribed number of sub-blocks around it. SC-LDPCL codes are also studied under a channel model with variability across sub-blocks, for which decoding-performance lower bounds are derived.