We consider the one-parameter family of jet substructure observables known as angularities using the specific case of inclusive jets arising from photoproduction events at an Electron-Ion Collider (EIC). We perform numerical calculations at next-to-leading logarithmic accuracy within perturbative QCD and compare our results to PYTHIA 6 predictions. Overall, we find good agreement and conclude that jet substructure observables are feasible at the EIC despite the relatively low jet transverse momentum and particle multiplicities. We investigate the size of subleading power corrections relevant at low energies within the Monte Carlo setup. In order to establish the validity of the Monte Carlo tune, we also perform comparisons to jet shape data at HERA. We further discuss detector requirements necessary for angularity measurements at an EIC, focusing on hadron calorimeter energy and spatial resolutions. Possible applications of precision jet substructure measurements at the EIC include the tuning of Monte Carlo event generators, the extraction of nonperturbative parameters and studies of cold nuclear matter effects.