Do you want to publish a course? Click here

Robust Principal Component Analysis Based On Maximum Correntropy Power Iterations

139   0   0.0 ( 0 )
 Added by Bruno Scalzo Dees
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Principal component analysis (PCA) is recognised as a quintessential data analysis technique when it comes to describing linear relationships between the features of a dataset. However, the well-known sensitivity of PCA to non-Gaussian samples and/or outliers often makes it unreliable in practice. To this end, a robust formulation of PCA is derived based on the maximum correntropy criterion (MCC) so as to maximise the expected likelihood of Gaussian distributed reconstruction errors. In this way, the proposed solution reduces to a generalised power iteration, whereby: (i) robust estimates of the principal components are obtained even in the presence of outliers; (ii) the number of principal components need not be specified in advance; and (iii) the entire set of principal components can be obtained, unlike existing approaches. The advantages of the proposed maximum correntropy power iteration (MCPI) are demonstrated through an intuitive numerical example.



rate research

Read More

The robust PCA of covariance matrices plays an essential role when isolating key explanatory features. The currently available methods for performing such a low-rank plus sparse decomposition are matrix specific, meaning, those algorithms must re-run for every new matrix. Since these algorithms are computationally expensive, it is preferable to learn and store a function that instantaneously performs this decomposition when evaluated. Therefore, we introduce Denise, a deep learning-based algorithm for robust PCA of covariance matrices, or more generally of symmetric positive semidefinite matrices, which learns precisely such a function. Theoretical guarantees for Denise are provided. These include a novel universal approximation theorem adapted to our geometric deep learning problem, convergence to an optimal solution of the learning problem and convergence of the training scheme. Our experiments show that Denise matches state-of-the-art performance in terms of decomposition quality, while being approximately 2000x faster than the state-of-the-art, PCP, and 200x faster than the current speed optimized method, fast PCP.
242 - Xi Liu , Badong Chen , Bin Xu 2016
The unscented transformation (UT) is an efficient method to solve the state estimation problem for a non-linear dynamic system, utilizing a derivative-free higher-order approximation by approximating a Gaussian distribution rather than approximating a non-linear function. Applying the UT to a Kalman filter type estimator leads to the well-known unscented Kalman filter (UKF). Although the UKF works very well in Gaussian noises, its performance may deteriorate significantly when the noises are non-Gaussian, especially when the system is disturbed by some heavy-tailed impulsive noises. To improve the robustness of the UKF against impulsive noises, a new filter for nonlinear systems is proposed in this work, namely the maximum correntropy unscented filter (MCUF). In MCUF, the UT is applied to obtain the prior estimates of the state and covariance matrix, and a robust statistical linearization regression based on the maximum correntropy criterion (MCC) is then used to obtain the posterior estimates of the state and covariance. The satisfying performance of the new algorithm is confirmed by two illustrative examples.
Robust principal component analysis (RPCA) is a widely used tool for dimension reduction. In this work, we propose a novel non-convex algorithm, coined Iterated Robust CUR (IRCUR), for solving RPCA problems, which dramatically improves the computational efficiency in comparison with the existing algorithms. IRCUR achieves this acceleration by employing CUR decomposition when updating the low rank component, which allows us to obtain an accurate low rank approximation via only three small submatrices. Consequently, IRCUR is able to process only the small submatrices and avoid expensive computing on the full matrix through the entire algorithm. Numerical experiments establish the computational advantage of IRCUR over the state-of-art algorithms on both synthetic and real-world datasets.
96 - Chao Ma , Guohua Gu , Xin Miao 2020
Infrared target tracking plays an important role in both civil and military fields. The main challenges in designing a robust and high-precision tracker for infrared sequences include overlap, occlusion and appearance change. To this end, this paper proposes an infrared target tracker based on proximal robust principal component analysis method. Firstly, the observation matrix is decomposed into a sparse occlusion matrix and a low-rank target matrix, and the constraint optimization is carried out with an approaching proximal norm which is better than L1-norm. To solve this convex optimization problem, Alternating Direction Method of Multipliers (ADMM) is employed to estimate the variables alternately. Finally, the framework of particle filter with model update strategy is exploited to locate the target. Through a series of experiments on real infrared target sequences, the effectiveness and robustness of our algorithm are proved.
Principal Component Analysis (PCA) finds a linear mapping and maximizes the variance of the data which makes PCA sensitive to outliers and may cause wrong eigendirection. In this paper, we propose techniques to solve this problem; we use the data-centering method and reestimate the covariance matrix using robust statistic techniques such as median, robust scaling which is a booster to data-centering and Huber M-estimator which measures the presentation of outliers and reweight them with small values. The results on several real world data sets show that our proposed method handles outliers and gains better results than the original PCA and provides the same accuracy with lower computation cost than the Kernel PCA using the polynomial kernel in classification tasks.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا