Do you want to publish a course? Click here

Atmospheric neutrino spectrum reconstruction with JUNO

100   0   0.0 ( 0 )
 Added by Giulio Settanta
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The atmospheric neutrino flux represents a continuous source that can be exploited to infer properties about Cosmic Rays and neutrino oscillation physics. The JUNO observatory, a 20 kt liquid scintillator currently under construction in China, will be able to detect atmospheric neutrinos , given the large fiducial volume and the excellent energy resolution. The light produced in neutrino interactions will be collected by a double-system of photosensors: about 18.000 20 PMTs and about 25.000 3 PMTs. The rock overburden above the experimental hall is around 700 m and the experiment is expected to complete construction in 2021. In this study, the JUNO performances in reconstructing the atmospheric neutrino spectrum have been evaluated. The different time evolution of scintillation light on the PMTs allows to discriminate the flavor of the primary neutrinos. To reconstruct the time pattern of events, the signals from 3 PMTs only have been used, because of the small time resolution. A probabilistic unfolding method has been used, in order to infer the primary neutrino energy spectrum by looking at the detector output. The simulated spectrum has been reconstructed between 100 MeV and 10 GeV, showing a great potential of the detector in the atmospheric low energy region. The uncertainties on the final flux, including both statistic and the systematic contributions, range between 10% and 25%, with the best performances obtained at the GeV.



rate research

Read More

136 - J. P. Ya~nez , A. Kouchner 2015
Neutrino oscillations have been probed during the last few decades using multiple neutrino sources and experimental set-ups. In the recent years, very large volume neutrino telescopes have started contributing to the field. First ANTARES and then IceCube have relied on large and sparsely instrumented volumes to observe atmospheric neutrinos for combinations of baselines and energies inaccessible to other experiments. Using this advantage, the latest result from IceCube starts approaching the precision of other established technologies, and is paving the way for future detectors, such as ORCA and PINGU. These new projects seek to provide better measurements of neutrino oscillation parameters, and eventually determine the neutrino mass ordering. The results from running experiments and the potential from proposed projects are discussed in this review, emphasizing the experimental challenges involved in the measurements.
The ordering of the neutrino mass eigenstates is one of the fundamental open questions in neutrino physics. While current-generation neutrino oscillation experiments are able to produce moderate indications on this ordering, upcoming experiments of the next generation aim to provide conclusive evidence. In this paper we study the combined performance of the two future multi-purpose neutrino oscillation experiments JUNO and the IceCube Upgrade, which employ two very distinct and complementary routes towards the neutrino mass ordering. The approach pursued by the $20,mathrm{kt}$ medium-baseline reactor neutrino experiment JUNO consists of a careful investigation of the energy spectrum of oscillated $bar{ u}_e$ produced by ten nuclear reactor cores. The IceCube Upgrade, on the other hand, which consists of seven additional densely instrumented strings deployed in the center of IceCube DeepCore, will observe large numbers of atmospheric neutrinos that have undergone oscillations affected by Earth matter. In a joint fit with both approaches, tension occurs between their preferred mass-squared differences $ Delta m_{31}^{2}=m_{3}^{2}-m_{1}^{2} $ within the wrong mass ordering. In the case of JUNO and the IceCube Upgrade, this allows to exclude the wrong ordering at $>5sigma$ on a timescale of 3--7 years --- even under circumstances that are unfavorable to the experiments individual sensitivities. For PINGU, a 26-string detector array designed as a potential low-energy extension to IceCube, the inverted ordering could be excluded within 1.5 years (3 years for the normal ordering) in a joint analysis.
Atmospheric neutrinos are one of the most relevant natural neutrino sources that can be exploited to infer properties about Cosmic Rays and neutrino oscillations. The Jiangmen Underground Neutrino Observatory (JUNO) experiment, a 20 kton liquid scintillator detector with excellent energy resolution is currently under construction in China. JUNO will be able to detect several atmospheric neutrinos per day given the large volume. A study on the JUNO detection and reconstruction capabilities of atmospheric $ u_e$ and $ u_mu$ fluxes is presented in this paper. In this study, a sample of atmospheric neutrinos Monte Carlo events has been generated, starting from theoretical models, and then processed by the detector simulation. The excellent timing resolution of the 3 PMT light detection system of JUNO detector and the much higher light yield for scintillation over Cherenkov allow to measure the time structure of the scintillation light with very high precision. Since $ u_e$ and $ u_mu$ interactions produce a slightly different light pattern, the different time evolution of light allows to discriminate the flavor of primary neutrinos. A probabilistic unfolding method has been used, in order to infer the primary neutrino energy spectrum from the detector experimental observables. The simulated spectrum has been reconstructed between 100 MeV and 10 GeV, showing a great potential of the detector in the atmospheric low energy region.
We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 GeV and 100 GeV, where a strong disappearance signal is expected. The detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by $Delta m^2_{32}=2.72^{+0.19}_{-0.20}times 10^{-3},mathrm{eV}^2$ and $sin^2theta_{23} = 0.53^{+0.09}_{-0.12}$ (normal mass hierarchy assumed). The results are compatible and comparable in precision to those of dedicated oscillation experiments.
Cosmic Ray and neutrino oscillation physics can be studied by using atmospheric neutrinos. JUNO (Jiangmen Underground Neutrino Observatory) is a large liquid scintillator detector with low energy detection threshold and excellent energy resolution. The detector performances allow the atmospheric neutrino oscillation measurements. In this work, a discrimination algorithm for different reaction channels of neutrino-nucleon interactions in the JUNO liquid scintillator, in the GeV/sub-GeV energy region, is presented. The atmospheric neutrino flux is taken as reference, considering $overset{(-)}{ u_mu}$ and $overset{(-)}{ u_e}$. The different temporal behaviour of the classes of events have been exploited to build a time profile-based discrimination algorithm. The results show a good selection power for $overset{(-)}{ u_e}$ CC events, while the $overset{(-)}{ u_mu}$ CC component suffers of an important contamination from NC events at low energy, which is under study. Preliminary results are presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا