The $Bto pi ell u_ell$ semileptonic decay within the LCSR approach under heavy quark effective field theory


Abstract in English

The heavy quark effective field theory (HQEFT) provides an effective way to deal with the heavy meson decays. In the paper, we adopt two different correlators to derive the light-cone sum rules of the $B to pi$ transition form factors (TFFs) within the framework of HQEFT. We label those two LCSR results as LCSR-${cal U}$ and LCSR-${cal R}$, which are for conventional correlator and right-handed correlator, respectively. We observe that the correlation parameter $|rho_{rm RU}|$ for the branching ratio ${cal B}(B to pi l u_{l})$ is $sim 0.85$, implying the consistency of the LCSRs under different correlators. Moreover, we obtain $|V_{rm ub}|_{{rm LCSR}-{cal U}}=(3.45^{+0.28}_{-0.20}pm{0.13}_{rm{exp}})times10^{-3}$ and $|V_{rm ub}|_{{rm LCSR}-{cal R}} =(3.38^{+0.22}_{-0.16} pm{0.12}_{rm{exp}})times10^{-3}$. We then obtain $mathcal{R}_{pi}|_{{rm LCSR}-{cal U}}=0.68^{+0.10}_{-0.09}$ and $mathcal{R}_{pi}|_{{rm LCSR}-{cal R}}=0.65^{+0.13}_{-0.11}$, both of them agree with the Lattice QCD predictions. Thus the HQEFT provides a useful framework for studying the $B$ meson decays. Moreover, by using right-handed correlator, the twist-2 terms shall dominant the TFF $f^+(q^2)$, which approaches over $sim97%$ contribution in the whole $q^2$-region; and the large twist-3 uncertainty for the conventional correlator is greatly suppressed. One can thus adopt the LCSR-${cal R}$ prediction to test the properties of the various models for the pion twist-2 distribution amplitudes.

Download