Do you want to publish a course? Click here

Observation of the radiative decays of $Upsilon(1S)$ to $chi_{c1}$

125   0   0.0 ( 0 )
 Added by Pavel Pakhlov
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We report the first observation of the radiative decay of the $Upsilon(1S)$ into a charmonium state. The statistical significance of the observed signal of $Upsilon(1S) to gamma chi_{c1}$ is 6.3 standard deviations including systematics. The branching fraction is calculated to be Br($Upsilon(1S) to gamma chi_{c1}$) = (4.7^{+2.4}_{-1.8} (stat) ^{+0.4}_{-0.5} (sys)) * 10^{-5}. We also searched for $Upsilon(1S)$ radiative decays into $chi_{c0,2}$ and $eta_c(1S,2S)$ and set upper limits on their branching fractions. These results are obtained from a 24.9 fb^{-1} data sample collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider at a center-of-mass energy equal to the $Upsilon(2S)$ mass using $Upsilon(1S)$ tagging by the $Upsilon(2S) to Upsilon(1S) pi^+pi^-$ transitions.



rate research

Read More

Using data samples of $102times10^6$ $Upsilon(1S)$ and $158times10^6$ $Upsilon(2S)$ events collected with the Belle detector, a first experimental search has been made for double-charmonium production in the exclusive decays $Upsilon(1S,2S)rightarrow J/psi(psi)+X$, where $X=eta_c$, $chi_{cJ} (J=~0,~1,~2)$, $eta_c(2S)$, $X(3940)$, and $X(4160)$. No significant signal is observed in the spectra of the mass recoiling against the reconstructed $J/psi$ or $psi$ except for the evidence of $chi_{c1}$ production with a significance of $4.6sigma$ for $Upsilon(1S)rightarrow J/psi+chi_{c1}$. The measured branching fraction $BR(Upsilon(1S)rightarrow J/psi+chi_{c1})$ is $(3.90pm1.21(rm stat.)pm0.23 (rm syst.))times10^{-6}$. The $90%$ confidence level upper limits on the branching fractions of the other modes having a significance of less than $3sigma$ are determined. These results are consistent with theoretical calculations using the nonrelativistic QCD factorization approach.
Using data obtained with the CLEO~III detector, running at the Cornell Electron Storage Ring (CESR), we report on a new study of exclusive radiative Upsilon(1S) decays into the final states gamma pi^+ pi^-, gamma K^+ K^-, and gamma p pbar.. We present branching ratio measurements for the decay modes Upsilon(1S) to gamma f_2(1270), Upsilon(1S) to gamma f_2(1525), and Upsilon(1S) to gamma K^+K^-; helicity production ratios for f_2(1270) and f_2(1525); upper limits for the decay Upsilon(1S) to gamma f_J(2200), with f_J(2220) to pi^+ pi^-, K^+ K^-, p pbar; and an upper limit for the decay Upsilon(1S) to gamma X(1860), with X(1860) to gamma p pbar.
We report the first observation of the hadronic transition $Upsilon(4S)toetaUpsilon(1S)$, using 496 fb$^{-1}$ data collected at the $Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy $e^{+}e^{-}$ collider. We reconstruct the $eta$ meson through its decays to $rho^0gamma$ and to $pi^+pi^-eta$, with $etatogammagamma$. We measure: ${cal B}(Upsilon(4S)toetaUpsilon(1S))=(3.43pm 0.88 {rm(stat.)} pm 0.21 {rm(syst.)})times10^{-5}$, with a significance of 5.7$sigma$.
The decays $chi_{c1} rightarrow J/psi mu^+ mu^-$ and $chi_{c2} rightarrow J/psi mu^+ mu^-$ are observed and used to study the resonance parameters of the $chi_{c1}$ and $chi_{c2}$ mesons. The masses of these states are measured to be m(chi_{c1}) = 3510.71 pm 0.04(stat) pm 0.09(syst)MeV,, m(chi_{c2}) = 3556.10 pm 0.06(stat) pm 0.11(syst)MeV,, where the knowledge of the momentum scale for charged particles dominates the systematic uncertainty. The momentum-scale uncertainties largely cancel in the mass difference m(chi_{c2}) - m(chi_{c1}) = 45.39 pm 0.07(stat) pm 0.03(syst)MeV,. The natural width of the $chi_{c2}$ meson is measured to be $$Gamma(chi_{c2}) = 2.10 pm 0.20(stat) pm 0.02(syst)MeV,.$$ These results are in good agreement with and have comparable precision to the current world averages.
The first observation of the decays $Lambda_b^0 to chi_{c1} p K^-$ and $Lambda_b^0 to chi_{c2} p K^-$ is reported using a data sample corresponding to an integrated luminosity of $3.0$ fb$^{-1}$, collected by the LHCb experiment in $pp$ collisions at centre-of-mass energies of 7 and 8 TeV. The following ratios of branching fractions are measured begin{eqnarray*} frac{{cal B}(Lambda_b^0 to chi_{c1} p K^-)}{{cal B}(Lambda_b^0 to J/psi p K^-)} = 0.242 pm 0.014 pm 0.013 pm 0.009, frac{{cal B}(Lambda_b^0 to chi_{c2} p K^-)}{{cal B}(Lambda_b^0 to J/psi p K^-)} = 0.248 pm 0.020 pm 0.014 pm 0.009, frac{{cal B}(Lambda_b^0 to chi_{c2} p K^-)}{{cal B}(Lambda_b^0 to chi_{c1} p K^-)} = 1.02 pm 0.10 pm 0.02 pm 0.05, end{eqnarray*} where the first uncertainty is statistical, the second systematic and the third due to the uncertainty on the branching fractions of the $chi_{c1}to J/psigamma$ and $chi_{c2} to J/psigamma$ decays. Using both decay modes, the mass of the $Lambda_b^0$ baryon is also measured to be $m_{Lambda_b^0} = 5619.44 pm 0.28 pm 0.26$ MeV/$c^2$, where the first and second uncertainties are statistical and systematic, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا