Do you want to publish a course? Click here

Complex Transport and Magnetism in Inhomogeneous Mixed Valence Ce$_3$Ir$_4$Ge$_{13}$

100   0   0.0 ( 0 )
 Added by Alannah Hallas
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of Ce$_3$Ir$_4$Ge$_{13}$, a new Remeika phase compound with a complex array of structural, electronic, and magnetic properties. Our single crystal x-ray diffraction measurements show that Ce$_3$Ir$_4$Ge$_{13}$ forms in the tetragonally distorted $I4_1/amd$ space group. The electrical resistivity is almost temperature independent over three decades in temperature, from 0.4 K to 400 K, while the Hall coefficient measurements are consistent with a low-carrier semimetal. Magnetic susceptibility measurements reveal an effective moment of $mu^{text{exp}}_{text{eff}} = 1.87 mu_B$/Ce, suggesting that this material has a mixture of magnetic Ce$^{3+}$ and non-magnetic Ce$^{4+}$. Upon cooling, Ce$_3$Ir$_4$Ge$_{13}$ first enters a short range magnetically ordered state below $T_{text{SRO}}=10$ K, marked by a deviation from Curie-Weiss behavior in susceptibility and a broad field-independent heat capacity anomaly. At lower temperatures, we observe a second, sharper peak in the heat capacity at $T^* = 1.7$ K, concurrent with a splitting of the field-cooled and zero-field-cooled susceptibilities. A small resistivity drop at $T^*$ suggests a loss of spin disorder scattering consistent with a magnetic ordering or spin freezing transition. Ce$_3$Ir$_4$Ge$_{13}$ is therefore a rare example of an inhomogeneous mixed valence compound with a complex array of thermodynamic and transport properties.



rate research

Read More

The magnetic, thermodynamic and electrical/thermal transport properties of the caged-structure quasi-skutterudite Gd$_3$Ir$_4$Sn$_{13}$ are re-investigated. The magnetization $M(T)$, specific heat $C_p(T)$ and the resistivity $rho(T)$ reveal a double-phase transition -- at $T_{N1}sim$ 10~K and at $T_{N2}sim$ 8.8~K -- which was not observed in the previous report on this compound. The antiferromagnetic transition is also visible in the thermal transport data, thereby suggesting a close connection between the electronic and lattice degrees of freedom in this Sn-based quasi-skutterudite. The temperature dependence of $rho(T)$ is analyzed in terms of a power-law for resistivity pertinent to Fermi liquid picture. Giant, positive magnetoresistance (MR) $approx$ 80$%$ is observed in Gd$_3$Ir$_4$Sn$_{13}$ at 2~K with the application of 9~T. The giant MR and the double magnetic transition can be attributed to the quasi-cages and layered antiferromagnetic structure of Gd$_3$Ir$_4$Sn$_{13}$ vulnerable to structural distortions and/or dipolar or spin-reorientation effects. The giant value of MR observed in this class of 3:4:13 type alloys, especially in a Gd-compound, is the highlight of this work.
The robust field-insensitive heavy fermion features in Sm$_3$Ru$_4$Ge$_{13}$ and the magnetic phase transition at $T_N approx$ 5~K are studied using magnetization $M(T)$, specific heat $C_p(T)$, resistivity $rho(T)$ and thermal conductivity $kappa_T(T)$. The average crystal structure of Sm$_3$Ru$_4$Ge$_{13}$ conforms to the cubic space group $Pmbar{3}n$ however, signatures of subtle structural distortions are obtained from the x ray data. The magnetic susceptibility, $chi(T)$, follows a modified Curie-Weiss law indicating the presence of crystal fields of Sm$^{3+}$ and the significance of van Vleck terms. No sign of ferromagnetism is observed in $M(H)$ of Sm$_3$Ru$_4$Ge$_{13}$ which yields only 0.025~$mu_mathrm{B}$/f.u.-Sm at 2~K, 7~T. The Sommerfeld coefficient, $gamma approx$ 220~mJ/mol-Sm K$^2$, estimated from the analysis of low temperature specific heat suggests the formation of heavy quasi particles at low temperature. Though a ln$T$ dependence of $rho(T)$ is observed till 60~K, the resistivity behavior is accounted for by assuming a two-band model for activated behavior of charge carriers. The field scans of resistivity, $rho(H)$, below $T_N$ display significant nonlinearity while those above the $T_N$ are more metal-like. Low values of thermal conductivity, $kappa_T(T)$, are observed in Sm$_3$Ru$_4$Ge$_{13}$ however, displaying an anomaly at $T_N$ which signifies magnetoelastic coupling. A fairly high value of Seebeck coefficient, $S approx$ 40~$mu$V/K is observed at 300~K. We identify Sm$_3$Ru$_4$Ge$_{13}$ as a low charge carrier density system with unusual field-insensitive heavy fermion features very similar to the filled skutterudites.
We report the results of high pressure x-ray diffraction, x-ray absorption, and electrical transport measurements of Kondo insulator Ce$_3$Bi$_4$Pt$_3$ up to 42 GPa, the highest pressure reached in the study of any Ce-based KI. We observe a smooth decrease in volume and movement toward intermediate Ce valence with pressure, both of which point to increased electron correlations. Despite this, temperature-dependent resistance data show the suppression of the interaction-driven ambient pressure insulating ground state. We also discuss potential ramifications of these results for the predicted topological KI state.
Oxides containing iridium ions display a range of magnetic and conducting properties that depend on the delicate balance between interactions and are controlled, at least in part, by the details of the crystal architecture. We have used muon-spin rotation ($mu$SR) to study the local field in four iridium oxides, Ca$_4$IrO$_6$, Ca$_5$Ir$_3$O$_{12}$, Sr$_3$Ir$_2$O$_7$ and Sr$_2$IrO$_4$, which show contrasting behavior. Our $mu$SR data on Ca$_4$IrO$_6$ and Ca$_5$Ir$_3$O$_{12}$ are consistent with conventional antiferromagnetism where quasistatic magnetic order develops below $T_{rm N}=13.85(6)$ K and 7.84(7) K respectively. A lower internal field is observed for Ca$_5$Ir$_3$O$_{12}$, as compared to Ca$_4$IrO$_6$ reflecting the presence of both Ir$^{4+}$ and Ir$^{5+}$ ions, resulting in a more magnetically dilute structure. Muon precession is only observed over a restricted range of temperature in Sr$_3$Ir$_2$O$_7$, while the Mott insulator Sr$_2$IrO$_4$ displays more complex behavior, with the $mu$SR signal containing a single, well-resolved precession signal below $T_{rm N}=230$,K, which splits into two precession signals at low temperature following a reorientation of the spins in the ordered state.
We report on single crystal growth and crystallographic parameters results of Ce$_2$PdIn$_8$, Ce$_3$PdIn$_{11}$, Ce$_2$PtIn$_8$ and Ce$_3$PtIn$_{11}$. The Pt-systems Ce$_2$PtIn$_8$ and Ce$_3$PtIn$_{11}$ are synthesized for the first time. All these compounds are member of the Ce$_n$T$_m$In$_{3n+2m}$ (n = 1, 2,..; m = 1, 2,.. and T = transition metal) to which the extensively studied heavy fermion superconductor CeCoIn$_5$ belongs. Single crystals have been grown by In self-flux method. Differential scanning calorimetry studies were used to derive optimal growth conditions. Evidently, the maximum growth conditions for these materials should not exceed 750 $^{circ}$C. Single crystal x-ray data show that Ce$_2$TIn$_8$ compounds crystallize in the tetragonal Ho$_2$CoGa$_8$ phase (space group P4/mmm) with lattice parameters a =4.6898(3) $AA$ and c =12.1490(8) $AA$ for the Pt-based one (Pd: a = 4.6881(4) $AA$ and c = 12.2031(8) AA). The Ce$_3$TIn$_{11}$ compounds adopt the Ce$_3$PdIn$_{11}$ structure with a = 4.6874(4) $AA$ and c = 16.8422(12) $AA$ for the Pt-based one (Pd: a = 4.6896 $AA$ and c = 16.891 AA). Specific heat experiments on Ce$_3$PtIn$_{11}$ and Ce$_3$PdIn$_{11}$ have revealed that both compounds undergo two successive magnetic transitions at T$_1$ ~ 2.2 K followed by T$_N$ ~ 2.0 K and T$_1$ ~ 1.7 K and T$_N$ ~ 1.5 K, respectively. Additionally, both compounds exhibit enhanced Sommerfeld coefficients yielding {gamma}$_{Pt}$ = 0.300 J/mol K$^2$ Ce ({gamma}$_{Pd}$ = 0.290 J/mol K$^2$ Ce), hence qualifying them as heavy fermion materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا