Do you want to publish a course? Click here

Faster p-norm minimizing flows, via smoothed q-norm problems

108   0   0.0 ( 0 )
 Added by Deeksha Adil
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We present faster high-accuracy algorithms for computing $ell_p$-norm minimizing flows. On a graph with $m$ edges, our algorithm can compute a $(1+1/text{poly}(m))$-approximate unweighted $ell_p$-norm minimizing flow with $pm^{1+frac{1}{p-1}+o(1)}$ operations, for any $p ge 2,$ giving the best bound for all $pgtrsim 5.24.$ Combined with the algorithm from the work of Adil et al. (SODA 19), we can now compute such flows for any $2le ple m^{o(1)}$ in time at most $O(m^{1.24}).$ In comparison, the previous best running time was $Omega(m^{1.33})$ for large constant $p.$ For $psimdelta^{-1}log m,$ our algorithm computes a $(1+delta)$-approximate maximum flow on undirected graphs using $m^{1+o(1)}delta^{-1}$ operations, matching the current best bound, albeit only for unit-capacity graphs. We also give an algorithm for solving general $ell_{p}$-norm regression problems for large $p.$ Our algorithm makes $pm^{frac{1}{3}+o(1)}log^2(1/varepsilon)$ calls to a linear solver. This gives the first high-accuracy algorithm for computing weighted $ell_{p}$-norm minimizing flows that runs in time $o(m^{1.5})$ for some $p=m^{Omega(1)}.$ Our key technical contribution is to show that smoothed $ell_p$-norm problems introduced by Adil et al., are interreducible for different values of $p.$ No such reduction is known for standard $ell_p$-norm problems.



rate research

Read More

We give improved algorithms for the $ell_{p}$-regression problem, $min_{x} |x|_{p}$ such that $A x=b,$ for all $p in (1,2) cup (2,infty).$ Our algorithms obtain a high accuracy solution in $tilde{O}_{p}(m^{frac{|p-2|}{2p + |p-2|}}) le tilde{O}_{p}(m^{frac{1}{3}})$ iterations, where each iteration requires solving an $m times m$ linear system, $m$ being the dimension of the ambient space. By maintaining an approximate inverse of the linear systems that we solve in each iteration, we give algorithms for solving $ell_{p}$-regression to $1 / text{poly}(n)$ accuracy that run in time $tilde{O}_p(m^{max{omega, 7/3}}),$ where $omega$ is the matrix multiplication constant. For the current best value of $omega > 2.37$, we can thus solve $ell_{p}$ regression as fast as $ell_{2}$ regression, for all constant $p$ bounded away from $1.$ Our algorithms can be combined with fast graph Laplacian linear equation solvers to give minimum $ell_{p}$-norm flow / voltage solutions to $1 / text{poly}(n)$ accuracy on an undirected graph with $m$ edges in $tilde{O}_{p}(m^{1 + frac{|p-2|}{2p + |p-2|}}) le tilde{O}_{p}(m^{frac{4}{3}})$ time. For sparse graphs and for matrices with similar dimensions, our iteration counts and running times improve on the $p$-norm regression algorithm by [Bubeck-Cohen-Lee-Li STOC`18] and general-purpose convex optimization algorithms. At the core of our algorithms is an iterative refinement scheme for $ell_{p}$-norms, using the smoothed $ell_{p}$-norms introduced in the work of Bubeck et al. Given an initial solution, we construct a problem that seeks to minimize a quadratically-smoothed $ell_{p}$ norm over a subspace, such that a crude solution to this problem allows us to improve the initial solution by a constant factor, leading to algorithms with fast convergence.
We study the problem of finding flows in undirected graphs so as to minimize the weighted $p$-norm of the flow for any $p > 1$. When $p=2$, the problem is that of finding an electrical flow, and its dual is equivalent to solving a Laplacian linear system. The case $p = infty$ corresponds to finding a min-congestion flow, which is equivalent to max-flows. A typical algorithmic construction for such problems considers vertex potentials corresponding to the flow conservation constraints, and has two simple types of update steps: cycle toggling, which modifies the flow along a cycle, and cut toggling, which modifies all potentials on one side of a cut. Both types of steps are typically performed relative to a spanning tree $T$; then the cycle is a fundamental cycle of $T$, and the cut is a fundamental cut of $T$. In this paper, we show that these simple steps can be used to give a novel efficient implementation for the $p = 2$ case and to find near-optimal $p$-norm flows in a low number of iterations for all values of $p > 1$. Compared to known faster algorithms for these problems, our algorithms are simpler, more combinatorial, and also expose several underlying connections between these algorithms and dynamic graph data structures that have not been formalized previously.
$ $In many optimization problems, a feasible solution induces a multi-dimensional cost vector. For example, in load-balancing a schedule induces a load vector across the machines. In $k$-clustering, opening $k$ facilities induces an assignment cost vector across the clients. In this paper we consider the following minimum norm optimization problem : Given an arbitrary monotone, symmetric norm, find a solution which minimizes the norm of the induced cost-vector. This generalizes many fundamental NP-hard problems. We give a general framework to tackle the minimum norm problem, and illustrate its efficacy in the unrelated machine load balancing and $k$-clustering setting. Our concrete results are the following. $bullet$ We give constant factor approximation algorithms for the minimum norm load balancing problem in unrelated machines, and the minimum norm $k$-clustering problem. To our knowledge, our results constitute the first constant-factor approximations for such a general suite of objectives. $bullet$ In load balancing with unrelated machines, we give a $2$-approximation for the problem of finding an assignment minimizing the sum of the largest $ell$ loads, for any $ell$. We give a $(2+varepsilon)$-approximation for the so-called ordered load-balancing problem. $bullet$ For $k$-clustering, we give a $(5+varepsilon)$-approximation for the ordered $k$-median problem significantly improving the constant factor approximations from Byrka, Sornat, and Spoerhase (STOC 2018) and Chakrabarty and Swamy (ICALP 2018). $bullet$ Our techniques also imply $O(1)$ approximations to the best simultaneous optimization factor for any instance of the unrelated machine load-balancing and the $k$-clustering setting. To our knowledge, these are the first positive simultaneous optimization results in these settings.
114 - Dong An , Di Fang , Lin Lin 2020
The accuracy of quantum dynamics simulation is usually measured by the error of the unitary evolution operator in the operator norm, which in turn depends on certain norm of the Hamiltonian. For unbounded operators, after suitable discretization, the norm of the Hamiltonian can be very large, which significantly increases the simulation cost. However, the operator norm measures the worst-case error of the quantum simulation, while practical simulation concerns the error with respect to a given initial vector at hand. We demonstrate that under suitable assumptions of the Hamiltonian and the initial vector, if the error is measured in terms of the vector norm, the computational cost may not increase at all as the norm of the Hamiltonian increases using Trotter type methods. In this sense, our result outperforms all previous error bounds in the quantum simulation literature. Our result extends that of [Jahnke, Lubich, BIT Numer. Math. 2000] to the time-dependent setting. We also clarify the existence and the importance of commutator scalings of Trotter and generalized Trotter methods for time-dependent Hamiltonian simulations.
Linear regression in $ell_p$-norm is a canonical optimization problem that arises in several applications, including sparse recovery, semi-supervised learning, and signal processing. Generic convex optimization algorithms for solving $ell_p$-regression are slow in practice. Iteratively Reweighted Least Squares (IRLS) is an easy to implement family of algorithms for solving these problems that has been studied for over 50 years. However, these algorithms often diverge for p > 3, and since the work of Osborne (1985), it has been an open problem whether there is an IRLS algorithm that is guaranteed to converge rapidly for p > 3. We propose p-IRLS, the first IRLS algorithm that provably converges geometrically for any $p in [2,infty).$ Our algorithm is simple to implement and is guaranteed to find a $(1+varepsilon)$-approximate solution in $O(p^{3.5} m^{frac{p-2}{2(p-1)}} log frac{m}{varepsilon}) le O_p(sqrt{m} log frac{m}{varepsilon} )$ iterations. Our experiments demonstrate that it performs even better than our theoretical bounds, beats the standard Matlab/CVX implementation for solving these problems by 10--50x, and is the fastest among available implementations in the high-accuracy regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا