Do you want to publish a course? Click here

Identification of strontium in the merger of two neutron stars

143   0   0.0 ( 0 )
 Added by Darach Watson
 Publication date 2019
  fields Physics
and research's language is English
 Authors Darach Watson




Ask ChatGPT about the research

Half of all the elements in the universe heavier than iron were created by rapid neutron capture. The theory for this astrophysical `$r$-process was worked out six decades ago and requires an enormous neutron flux to make the bulk of these elements. Where this happens is still debated. A key piece of missing evidence is the identification of freshly-synthesised $r$-process elements in an astrophysical site. Current models and circumstantial evidence point to neutron star mergers as a probable $r$-process site, with the optical/infrared `kilonova emerging in the days after the merger a likely place to detect the spectral signatures of newly-created neutron-capture elements. The kilonova, AT2017gfo, emerging from the gravitational-wave--discovered neutron star merger, GW170817, was the first kilonova where detailed spectra were recorded. When these spectra were first reported it was argued that they were broadly consonant with an outflow of radioactive heavy elements, however, there was no robust identification of any element. Here we report the identification of the neutron-capture element strontium in a re-analysis of these spectra. The detection of a neutron-capture element associated with the collision of two extreme-density stars establishes the origin of $r$-process elements in neutron star mergers, and demonstrates that neutron stars contain neutron-rich matter.



rate research

Read More

We analyse the phenomenological implications of the two-families scenario on the merger of compact stars. That scenario is based on the coexistence of both hadronic stars and strange quark stars. After discussing the classification of the possible mergers, we turn to detailed numerical simulations of the merger of two hadronic stars, i.e., first family stars in which delta resonances and hyperons are present, and we show results for the threshold mass of such binaries, for the mass dynamically ejected and the mass of the disk surrounding the post-merger object. We compare these results with those obtained within the one-family scenario and we conclude that relevant signatures of the two-families scenario can be suggested, in particular: the possibility of a rapid collapse to a black hole for masses even smaller than the ones associated to GW170817; during the first milliseconds, oscillations of the postmerger remnant at frequencies higher than the ones obtained in the one-family scenario; a large value of the mass dynamically ejected and a small mass of the disk, for binaries of low total mass. Finally, based on a population synthesis analysis, we present estimates of the number of mergers for: two hadronic stars; hadronic star - strange quark star; two strange quark stars. We show that for unequal mass systems and intermediate values of the total mass, the merger of a hadronic star and a strange quark star is very likely (GW170817 has a possible interpretation into this category of mergers). On the other hand, mergers of two strange quark stars are strongly suppressed.
Although the main features of the evolution of binary neutron star systems are now well established, many details are still subject to debate, especially regarding the post-merger phase. In particular, the lifetime of the hyper-massive neutron stars formed after the merger is very hard to predict. In this work, we provide a simple analytic relation for the lifetime of the merger remnant as function of the initial mass of the neutron stars. This relation results from a joint fit of data from observational evidence and from various numerical simulations. In this way, a large range of collapse times, physical effects and equation of states is covered. Finally, we apply the relation to the gravitational wave event GW170817 to constrain the equation of state of dense matter.
We report the discovery and monitoring of the near-infrared counterpart (AT2017gfo) of a binary neutron-star merger event detected as a gravitational wave source by Advanced LIGO/Virgo (GW170817) and as a short gamma-ray burst by Fermi/GBM and Integral/SPI-ACS (GRB170817A). The evolution of the transient light is consistent with predictions for the behaviour of a kilonova/macronova, powered by the radioactive decay of massive neutron-rich nuclides created via r-process nucleosynthesis in the neutron-star ejecta. In particular, evidence for this scenario is found from broad features seen in Hubble Space Telescope infrared spectroscopy, similar to those predicted for lanthanide dominated ejecta, and the much slower evolution in the near-infrared Ks-band compared to the optical. This indicates that the late-time light is dominated by high-opacity lanthanide-rich ejecta, suggesting nucleosynthesis to the 3rd r-process peak (atomic masses A~195). This discovery confirms that neutron-star mergers produce kilo-/macronovae and that they are at least a major - if not the dominant - site of rapid neutron capture nucleosynthesis in the universe.
We present in this article an overview of the problem of neutron star masses. After a brief appraisal of the methods employed to determine the masses of neutron stars in binary systems, the existing sample of measured masses is presented, with a highlight on some very well-determined cases. We discuss the analysis made to uncover the underlying distribution and a few robust results that stand out from them. The issues related to some particular groups of neutron stars originated from different channels of stellar evolution are shown. Our conclusions are that last centurys paradigm that there a single, $1.4 M_{odot}$ scale is too simple. A bimodal or even more complex distribution is actually present. It is confirmed that some neutron stars have masses of $sim 2 M_{odot}$, and, while there is still no firm conclusion on the maximum and minimum values produced in nature, the field has entered a mature stage in which all these and related questions can soon be given an answer.
An understanding of spin frequency ($ u$) evolution of neutron stars in the low-mass X-ray binary (LMXB) phase is essential to explain the observed $ u$-distribution of millisecond pulsars (MSPs), and to probe the stellar and binary physics, including the possibility of continuous gravitational wave emission. Here, using numerical computations we conclude that $ u$ can evolve in two distinctly different modes, as $ u$ may approach a lower spin equilibrium value ($ u_{rm eq,per}$) for persistent accretion for a long-term average accretion rate ($dot{M}_{rm av}$) greater than a critical limit ($dot{M}_{rm av,crit}$), and may approach a higher effective spin equilibrium value ($ u_{rm eq,eff}$) for transient accretion for $dot{M}_{rm av} < dot{M}_{rm av,crit}$. For example, when $dot{M}_{rm av}$ falls below $dot{M}_{rm av,crit}$ for an initially persistent source, $ u$ increases considerably due to transient accretion, which is counterintuitive. We also find that, contrary to what was suggested, a fast or sudden decrease of $dot{M}_{rm av}$ to zero in the last part of the LMXB phase is not essential for the genesis of spin-powered MSPs, and neutron stars could spin up in this $dot{M}_{rm av}$-decreasing phase. Our findings imply that the traditional way of $ u$-evolution computation is inadequate in most cases, even for initially persistent sources, and may not even correctly estimate whether $ u$ increases or decreases.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا