Proton-3He scattering is one of the good probes to study the T=3/2 channel of three--nucleon forces. We have measured 3He analyzing powers for p-3He elastic scattering with the polarized 3He target at 70 and 100 MeV. The data are compared with the theoretical predictions based on the modern nucleon--nucleon potentials. Large discrepancies are found between the data and the calculations at the angles where the 3He analyzing power takes the minimum and maximum values, which are not explained by taking into account Delta-isobar degrees of freedom.
The charge form factor of the neutron has been determined from asymmetries measured in quasi--elastic pol.3He(pol e,en) at a momentum transfer of 0.67(GeV/c)^2. In addition, the target analyzing power, A_y^o, has been measured to study effects of final state interactions and meson exchange currents.
The electron-target-asymmetries A_parallel and A_perpendicular with target spin parallel and perpendicular to the momentum transfer q were measured for both the two-- and three-body breakup of 3He in the 3He(e,ep)-reaction. Polarized electrons were scattered off polarized 3He in the quasielastic regime in parallel kinematics with the scattered electron and the knocked-out proton detected using the Three-Spectrometer-Facility at MAMI. The results are compared to Faddeev calculations which take into account Final State Interactions as well as Meson Exchange Currents. The experiment confirms the prediction of a large effect of Final State Interactions in the asymmetry of the three-body breakup and of an almost negligible one for the two-body breakup.
The mechanism for the d(p,{gamma})3He reaction in the region of ultralow proton-deuteron collision energies (6.67<E<12.67 keV) is investigated using a target of zirconium deuterides. The experiment was carried out in the proton beam from the high-current pulsed Hall accelerator. Dependences of the astrophysical S-factor and the effective pd - reaction cross section on the proton-deuteron collision energy are measured. The results are compared with the available literature data. The results of this work agree with the experimental results obtained the LUNA collaboration with the target of gaseous deuterium.
We report on the experimental search for the bound state of an $eta$ meson and $^{3}hspace{-0.03cm}mbox{He}$ nucleus performed using the WASA-at-COSY detector setup. In order to search for the $eta$-mesic nucleus decay, the $pdrightarrow$ $^{3}hspace{-0.03cm}mbox{He} 2gamma$ and $pdrightarrow$ $^{3}hspace{-0.03cm}mbox{He} 6gamma$ channels have been analysed. These reactions manifest the direct decay of $eta$ meson bound in $^{3}hspace{-0.03cm}mbox{He}$ nucleus. This non-mesonic decay channel has been considered for the first time. When taking into account only statistical errors, the obtained excitation functions reveal a slight indication for a possible bound state signal corresponding to an $^3$He-$eta$ nucleus width $Gamma$ above 20 MeV and binding energy $B_s$ between 0 and 15 MeV. However, the determined cross sections are consistent with zero in the range of the systematic uncertainty. Therefore, as final result we estimate only the upper limit for the cross section of the $eta$-mesic $^{3}hspace{-0.03cm}mbox{He}$ nucleus formation followed by the $eta$ meson decay which varies between $2$ nb and $15$ nb depending on possible bound state parameters.
p-3H and n-3He scattering in the energy range above the n-3He but below the d-d thresholds is studied by solving the 4-nucleon problem with a realistic nucleon-nucleon interaction. Three different methods -- Alt, Grassberger and Sandhas, Hyperspherical Harmonics, and Faddeev-Yakubovsky -- have been employed and their results for both elastic and charge-exchange processes are compared. We observe a good agreement between the three different methods, thus the obtained results may serve as a benchmark. A comparison with the available experimental data is also reported and discussed.
A. Watanabe
,S. Nakai
,K. Sekiguchi
.
(2019)
.
"Measurement of 3He analyzing power for p-3He scattering using the polarized 3He target"
.
Atomu Watanabe
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا