Do you want to publish a course? Click here

Resolving the Interstellar Medium in Ultraluminous Infrared QSO Hosts with ALMA

63   0   0.0 ( 0 )
 Added by Qinghua Tan
 Publication date 2019
  fields Physics
and research's language is English
 Authors Qing-Hua Tan




Ask ChatGPT about the research

We present ALMA observations of the CO(1-0) line and 3-mm continuum emission in eight ultraluminous infrared (IR) quasi-stellar objects (QSOs) at z = 0.06-0.19. All eight IR QSO hosts are clearly resolved in their CO molecular gas emission with a median source size of 3.2 kpc, and seven out of eight sources are detected in 3-mm continuum, which is found to be more centrally concentrated with respect to molecular gas with sizes of 0.4-1.0 kpc. Our observations reveal a diversity of CO morphology and kinematics for the IR QSO systems which can be roughly classified into three categories, rotating gas disk with ordered velocity gradient, compact CO peak with disturbed velocity, and multiple CO distinct sources undergoing a merger between luminous QSO and a companion galaxy separated by a few kpc. The molecular gas in three of IR QSO hosts are found to be rotation-dominated with the ratio of the maximum rotation velocity to the local velocity dispersion of $V_{rm rot}/sigma=4-6$. Basic estimates of the dynamical masses within the CO-emitting regions give masses between $7.4times10^9$ and $6.9times10^{10}$ $M_odot$. We find an increasing trend between BH mass accretion rate and star formation rate (SFR) over three orders of magnitude in far-IR luminosity/SFR, in line with the correlation between QSO bolometric luminosity and SF activity, indicative of a likely direct connection between AGN and SF activity over galaxy evolution timescales.



rate research

Read More

We map the distribution and properties of the Milky Ways interstellar medium as traced by diffuse interstellar bands (DIBs) detected in near-infrared stellar spectra from the SDSS-III/APOGEE survey. Focusing exclusively on the strongest DIB in the H-band, at ~1.527 microns, we present a projected map of the DIB absorption field in the Galactic plane, using a set of about 60,000 sightlines that reach up to 15 kpc from the Sun and probe up to 30 magnitudes of visual extinction. The strength of this DIB is linearly correlated with dust reddening over three orders of magnitude in both DIB equivalent width (W_DIB) and extinction, with a power law index of 1.01 +/- 0.01, a mean relationship of W_DIB/A_V = 0.1 Angstrom mag^-1, and a dispersion of ~0.05 Angstrom mag^-1 at extinctions characteristic of the Galactic midplane. These properties establish this DIB as a powerful, independent probe of dust extinction over a wide range of A_V values. The subset of about 14,000 robustly detected DIB features have an exponential W_DIB distribution. We empirically determine the intrinsic rest wavelength of this transition to be lambda_0 = 15,272.42 Angstrom, and then calculate absolute radial velocities of the carrier, which display the kinematical signature of the rotating Galactic disk. We probe the DIB carrier distribution in three dimensions and show that it can be characterized by an exponential disk model with a scaleheight of about 100 pc and a scalelength of about 5 kpc. Finally, we show that the DIB distribution also traces large-scale Galactic structures, including the central long bar and the warp of the outer disk.
77 - S. Veilleux , 2001
For the past several years, our group has pursued a vigorous ground-based program aimed at understanding the nature of ultraluminous infrared galaxies. We recently published the results from a optical/near-infrared spectroscopic survey of a large statistically complete sample of ultraluminous infrared galaxies (the IRAS 1-Jy sample). We now present the results from our recently completed optical/near-infrared imaging survey of the 1-Jy sample. These data provide detailed morphological information on both large scale (e.g., intensity and color profiles, intensity and size of tidal tails and bridges, etc) and small scale (e.g., nuclear separation, presence of bars, etc) that helps us constrain the initial conditions necessary to produce galaxies with such high level of star formation and/or AGN activity. The nature of the interdependence between some key spectroscopic and morphological parameters in our objects (e.g., dominant energy source: super-starburst versus quasar, nuclear separation, merger phase, star formation rate, and infrared luminosity and color) is used to clarify the connection between starbursts, ultraluminous infrared galaxies, and quasars.
Integral-field spectroscopy in the near-infrared (NIR) is a powerful tool to analyze the gaseous and stellar distributions and kinematics, as well as the excitation mechanisms in the centers of galaxies. The unique combination of NIR and sub-mm data at comparable high angular resolution, which has just been possible with SINFONI and ALMA, allows to trace warm and cold gas reservoirs. Only the NIR gives an unobscured view to the center and allows to study the conditions and impact of star formation in the centers of galaxies in a spatially resolved way. Here, we present recent studies of nearby Seyferts and low-luminosity QSOs performed by our group.
We conducted observations of 12CO(J=5-4) and dust thermal continuum emission toward twenty star-forming galaxies on the main sequence at z~1.4 using ALMA to investigate the properties of the interstellar medium. The sample galaxies are chosen to trace the distributions of star-forming galaxies in diagrams of stellar mass-star formation rate and stellar mass-metallicity. We detected CO emission lines from eleven galaxies. The molecular gas mass is derived by adopting a metallicity-dependent CO-to-H2 conversion factor and assuming a CO(5-4)/CO(1-0) luminosity ratio of 0.23. Molecular gas masses and its fractions (molecular gas mass/(molecular gas mass + stellar mass)) for the detected galaxies are in the ranges of (3.9-12) x 10^{10} Msun and 0.25-0.94, respectively; these values are significantly larger than those in local spiral galaxies. The molecular gas mass fraction decreases with increasing stellar mass; the relation holds for four times lower stellar mass than that covered in previous studies, and that the molecular gas mass fraction decreases with increasing metallicity. Stacking analyses also show the same trends. The dust thermal emissions were clearly detected from two galaxies and marginally detected from five galaxies. Dust masses of the detected galaxies are (3.9-38) x 10^{7} Msun. We derived gas-to-dust ratios and found they are 3-4 times larger than those in local galaxies. The depletion times of molecular gas for the detected galaxies are (1.4-36) x 10^{8} yr while the results of the stacking analysis show ~3 x 10^{8} yr. The depletion time tends to decrease with increasing stellar mass and metallicity though the trend is not so significant, which contrasts with the trends in local galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا