No Arabic abstract
We consider testing the ability of quantum network nodes to execute multi-round quantum protocols. Specifically, we examine protocols in which the nodes are capable of performing quantum gates, storing qubits and exchanging said qubits over the network a certain number of times. We propose a simple ping-pong test, which provides a certificate for the capability of the nodes to run certain multi-round protocols. We first show that in the noise-free regime the only way the nodes can pass the test is if they do indeed possess the desired capabilities. We then proceed to consider the case where operations are noisy, and provide an initial analysis showing how our test can be used to estimate parameters that allow us to draw conclusions about the actual performance of such protocols on the tested nodes. Finally, we investigate the tightness of this analysis using example cases in a numerical simulation.
Self-testing is a method to certify devices from the result of a Bell test. Although examples of noise tolerant self-testing are known, it is not clear how to deal efficiently with a finite number of experimental trials to certify the average quality of a device without assuming that it behaves identically at each run. As a result, existing self-testing results with finite statistics have been limited to guarantee the proper working of a device in just one of all experimental trials, thereby limiting their practical applicability. We here derive a method to certify through self-testing that a device produces states on average close to a Bell state without assumption on the actual state at each run. Thus the method is free of the I.I.D. (independent and identically distributed) assumption. Applying this new analysis on the data from a recent loophole-free Bell experiment, we demonstrate the successful distribution of Bell states over 398 meters with an average fidelity of $geq$55.50% at a confidence level of 99%. Being based on a Bell test free of detection and locality loopholes, our certification is evidently device-independent, that is, it does not rely on trust in the devices or knowledge of how the devices work. This guarantees that our link can be integrated in a quantum network for performing long-distance quantum communications with security guarantees that are independent of the details of the actual implementation.
Concomitant with the rapid development of quantum technologies, challenging demands arise concerning the certification and characterization of devices. The promises of the field can only be achieved if stringent levels of precision of components can be reached and their functioning guaranteed. This review provides a brief overview of the known characterization methods of certification, benchmarking, and tomographic recovery of quantum states and processes, as well as their applications in quantum computing, simulation, and communication.
Minimal informationally complete positive operator-valued measures (MIC-POVMs) are special kinds of measurement in quantum theory in which the statistics of their $d^2$-outcomes are enough to reconstruct any $d$-dimensional quantum state. For this reason, MIC-POVMs are referred to as standard measurements for quantum information. Here, we report an experiment with entangled photon pairs that certifies, for what we believe is the first time, a MIC-POVM for qubits following a device-independent protocol (i.e., modeling the state preparation and the measurement devices as black boxes, and using only the statistics of the inputs and outputs). Our certification is achieved under the assumption of freedom of choice, no communication, and fair sampling.
As quantum technologies develop, we acquire control of an ever-growing number of quantum systems. Unfortunately, current tools to detect relevant quantum properties of quantum states, such as entanglement and Bell nonlocality, suffer from severe scalability issues and can only be computed for systems of a very modest size, of around $6$ sites. In order to address large many-body systems, we propose a renormalisation-type approach based on a class of local linear transformations, called connectors, which can be used to coarse-grain the system in a way that preserves the property under investigation. Repeated coarse-graining produces a system of manageable size, whose properties can then be explored by means of usual techniques for small systems. In case of a successful detection of the desired property, the method outputs a linear witness which admits an exact tensor network representation, composed of connectors. We demonstrate the power of our method by certifying using a normal desktop computer entanglement, Bell nonlocality and supra-quantum Bell nonlocality in systems with hundreds of sites.
We study the quantum query complexity of finding a certificate for a d-regular, k-level balanced NAND formula. Up to logarithmic factors, we show that the query complexity is Theta(d^{(k+1)/2}) for 0-certificates, and Theta(d^{k/2}) for 1-certificates. In particular, this shows that the zero-error quantum query complexity of evaluating such formulas is O(d^{(k+1)/2}) (again neglecting a logarithmic factor). Our lower bound relies on the fact that the quantum adversary method obeys a direct sum theorem.