Do you want to publish a course? Click here

The Kepler-11 system: evolution of the stellar high-energy emission and {initial planetary} atmospheric mass fractions

115   0   0.0 ( 0 )
 Added by Daria Kubyshkina
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The atmospheres of close-in planets are strongly influenced by mass loss driven by the high-energy (X-ray and extreme ultraviolet, EUV) irradiation of the host star, particularly during the early stages of evolution. We recently developed a framework to exploit this connection and enable us to recover the past evolution of the stellar high-energy emission from the present-day properties of its planets, if the latter retains some remnants of their primordial hydrogen-dominated atmospheres. Furthermore, the framework can also provide constraints on planetary initial atmospheric mass fractions. The constraints on the output parameters improve when more planets can be simultaneously analysed. This makes the Kepler-11 system, which hosts six planets with bulk densities between 0.66 and 2.45g cm^{-3}, an ideal target. Our results indicate that the star has likely evolved as a slow rotator (slower than 85% of the stars with similar masses), corresponding to a high-energy emission at 150 Myr of between 1-10 times that of the current Sun. We also constrain the initial atmospheric mass fractions for the planets, obtaining a lower limit of 4.1% for planet c, a range of 3.7-5.3% for planet d, a range of 11.1-14% for planet e, a range of 1-15.6% for planet f, and a range of 4.7-8.7% for planet g assuming a disc dispersal time of 1 Myr. For planet b, the range remains poorly constrained. Our framework also suggests slightly higher masses for planets b, c, and f than have been suggested based on transit timing variation measurements. We coupled our results with published planet atmosphere accretion models to obtain a temperature (at 0.25 AU, the location of planet f) and dispersal time of the protoplanetary disc of 550 K and 1 Myr, although these results may be affected by inconsistencies in the adopted system parameters.



rate research

Read More

GJ 1132b, which orbits an M dwarf, is one of the few known Earth-sized planets, and at 12 pc away it is one of the closest known transiting planets. Receiving roughly 19x Earths insolation, this planet is too hot to be habitable but can inform us about the volatile content of rocky planet atmospheres around cool stars. Using Hubble STIS spectra, we search for a transit in the Lyman-alpha line of neutral hydrogen (Ly-alpha). If we were to observe a deep Ly-alpha absorption signature, that would indicate the presence of a neutral hydrogen envelope flowing from GJ 1132b. On the other hand, ruling out deep absorption from neutral hydrogen may indicate that this planet does not have a detectable amount of hydrogen loss, is not losing hydrogen, or lost hydrogen and other volatiles early in the stars life. We do not detect a transit and determine a 2-sigma upper limit on the effective envelope radius of 0.36 R* in the red wing of the Ly-alpha line, which is the only portion of the spectrum we detect after absorption by the ISM. We analyze the Ly-alpha spectrum and stellar variability of GJ1132, which is a slowly-rotating 0.18 solar mass M dwarf with previously uncharacterized UV activity. Our data show stellar variabilities of 5-22%, which is consistent with the M dwarf UV variabilities of up to 41% found by citet{Loyd2014}. Understanding the role that UV variability plays in planetary atmospheres is crucial to assess atmospheric evolution and the habitability of cooler rocky exoplanets.
Context. Kepler-444 is one of the oldest planetary systems known thus far. Its peculiar configuration consisting of five sub-Earth-sized planets orbiting the companion to a binary stellar system makes its early history puzzling. Moreover, observations of HI-Ly-$rm alpha$ variations raise many questions about the potential presence of escaping atmospheres today. Aims. We aim to study the orbital evolution of Kepler-444-d and Kepler-444-e and the impact of atmospheric evaporation on Kepler-444-e. Methods. Rotating stellar models of Kepler-444-A were computed with the Geneva stellar evolution code and coupled to an orbital evolution code, accounting for the effects of dynamical, equilibrium tides and atmospheric evaporation. The impacts of multiple stellar rotational histories and extreme ultraviolet (XUV) luminosity evolutionary tracks are explored. Results. Using detailed rotating stellar models able to reproduce the rotation rate of Kepler-444-A, we find that its observed rotation rate is perfectly in line with what is expected for this old K0-type star, indicating that there is no reason for it to be exceptionally active as would be required to explain the observed HI-Ly-$rm alpha$ variations from a stellar origin. We show that given the low planetary mass ($sim$ 0.03 M$_{rm oplus}$) and relatively large orbital distance ($sim$ 0.06 AU) of Kepler-444-d and e, dynamical tides negligibly affect their orbits, regardless of the stellar rotational history considered. We point out instead how remarkable the impact is of the stellar rotational history on the estimation of the lifetime mass loss for Kepler-444-e. We show that, even in the case of an extremely slow rotating star, it seems unlikely that such a planet could retain a fraction of the initial water-ice content if we assume that it formed with a Ganymede-like composition.
Nearly 15 years of radial velocity (RV) monitoring and direct imaging enabled the detection of two giant planets orbiting the young, nearby star $beta$ Pictoris. The $delta$ Scuti pulsations of the star, overwhelming planetary signals, need to be carefully suppressed. In this work, we independently revisit the analysis of the RV data following a different approach than in the literature to model the activity of the star. We show that a Gaussian Process (GP) with a stochastically driven damped harmonic oscillator kernel can model the $delta$ Scuti pulsations. It provides similar results as parametric models but with a simpler framework, using only 3 hyperparameters. It also enables to model poorly sampled RV data, that were excluded from previous analysis, hence extending the RV baseline by nearly five years. Altogether, the orbit and the mass of both planets can be constrained from RV only, which was not possible with the parametric modelling. To characterize the system more accurately, we also perform a joint fit of all available relative astrometry and RV data. Our orbital solutions for $beta$ Pic b favour a low eccentricity of $0.029^{+0.061}_{-0.024}$ and a relatively short period of $21.1^{+2.0}_{-0.8}$ yr. The orbit of $beta$ Pic c is eccentric with $0.206^{+0.074}_{-0.063}$ with a period of $3.36pm0.03$ yr. We find model-independent masses of $11.7pm1.4$ and $8.5pm0.5$ M$_{Jup}$ for $beta$ Pic b and c, respectively, assuming coplanarity. The mass of $beta$ Pic b is consistent with the hottest start evolutionary models, at an age of $25pm3$ Myr. A direct direction of $beta$ Pic c would provide a second calibration measurement in a coeval system.
We present calculations of the occurrence rate of small close-in planets around low mass dwarf stars using the known planet populations from the $Kepler$ and $K2$ missions. Applying completeness corrections clearly reveals the radius valley in the maximum a-posteriori occurrence rates as a function of orbital separation and planet radius. We measure the slope of the valley to be $r_{p,text{valley}} propto F^{-0.060pm 0.025}$ which bears the opposite sign from that measured around Sun-like stars thus suggesting that thermally driven atmospheric mass loss may not dominate the evolution of planets in the low stellar mass regime or that we are witnessing the emergence of a separate channel of planet formation. The latter notion is supported by the relative occurrence of rocky to non-rocky planets increasing from $0.5pm 0.1$ around mid-K dwarfs to $8.5pm 4.6$ around mid-M dwarfs. Furthermore, the center of the radius valley at $1.54pm 0.16$ R$_{oplus}$ is shown to shift to smaller sizes with decreasing stellar mass in agreement with physical models of photoevaporation, core-powered mass loss, and gas-poor formation. Although current measurements are insufficient to robustly identify the dominant formation pathway of the radius valley, such inferences may be obtained by $TESS$ with $mathcal{O}(85,000)$ mid-to-late M dwarfs observed with 2-minute cadence. The measurements presented herein also precisely designate the subset of planetary orbital periods and radii that should be targeted in radial velocity surveys to resolve the rocky to non-rocky transition around low mass stars.
The Kepler mission has allowed the detection of numerous multi-planet exosystems where the planetary orbits are relatively compact. The first such system detected was Kepler-11 which has six known planets at the present time. These kinds of systems offer unique opportunities to study constraints on planetary albedos by taking advantage of both the precision timing and photometry provided by Kepler data to monitor possible phase variations. Here we present a case study of the Kepler-11 system in which we investigate the phase modulation of the system as the planets orbit the host star. We provide predictions of maximum phase modulation where the planets are simultaneously close to superior conjunction. We use corrected Kepler data for Q1-Q17 to determine the significance of these phase peaks. We find that data quarters where maximum phase peaks occur are better fit by a phase model than a null hypothesis model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا