No Arabic abstract
In this paper, we present a novel factor graph formulation to estimate the pose and velocity of a quadruped robot on slippery and deformable terrain. The factor graph introduces a preintegrated velocity factor that incorporates velocity inputs from leg odometry and also estimates related biases. From our experimentation we have seen that it is difficult to model uncertainties at the contact point such as slip or deforming terrain, as well as leg flexibility. To accommodate for these effects and to minimize leg odometry drift, we extend the robots state vector with a bias term for this preintegrated velocity factor. The bias term can be accurately estimated thanks to the tight fusion of the preintegrated velocity factor with stereo vision and IMU factors, without which it would be unobservable. The system has been validated on several scenarios that involve dynamic motions of the ANYmal robot on loose rocks, slopes and muddy ground. We demonstrate a 26% improvement of relative pose error compared to our previous work and 52% compared to a state-of-the-art proprioceptive state estimator.
A key challenge towards the goal of multi-part assembly tasks is finding robust sensorimotor control methods in the presence of uncertainty. In contrast to previous works that rely on a priori knowledge on whether two parts match, we aim to learn this through physical interaction. We propose a hierarchical approach that enables a robot to autonomously assemble parts while being uncertain about part types and positions. In particular, our probabilistic approach learns a set of differentiable filters that leverage the tactile sensorimotor trace from failed assembly attempts to update its belief about part position and type. This enables a robot to overcome assembly failure. We demonstrate the effectiveness of our approach on a set of object fitting tasks. The experimental results indicate that our proposed approach achieves higher precision in object position and type estimation, and accomplishes object fitting tasks faster than baselines.
Legged robots, specifically quadrupeds, are becoming increasingly attractive for industrial applications such as inspection. However, to leave the laboratory and to become useful to an end user requires reliability in harsh conditions. From the perspective of state estimation, it is essential to be able to accurately estimate the robots state despite challenges such as uneven or slippery terrain, textureless and reflective scenes, as well as dynamic camera occlusions. We are motivated to reduce the dependency on foot contact classifications, which fail when slipping, and to reduce position drift during dynamic motions such as trotting. To this end, we present a factor graph optimization method for state estimation which tightly fuses and smooths inertial navigation, leg odometry and visual odometry. The effectiveness of the approach is demonstrated using the ANYmal quadruped robot navigating in a realistic outdoor industrial environment. This experiment included trotting, walking, crossing obstacles and ascending a staircase. The proposed approach decreased the relative position error by up to 55% and absolute position error by 76% compared to kinematic-inertial odometry.
Legged robots require knowledge of pose and velocity in order to maintain stability and execute walking paths. Current solutions either rely on vision data, which is susceptible to environmental and lighting conditions, or fusion of kinematic and contact data with measurements from an inertial measurement unit (IMU). In this work, we develop a contact-aided invariant extended Kalman filter (InEKF) using the theory of Lie groups and invariant observer design. This filter combines contact-inertial dynamics with forward kinematic corrections to estimate pose and velocity along with all current contact points. We show that the error dynamics follows a log-linear autonomous differential equation with several important consequences: (a) the observable state variables can be rendered convergent with a domain of attraction that is independent of the systems trajectory; (b) unlike the standard EKF, neither the linearized error dynamics nor the linearized observation model depend on the current state estimate, which (c) leads to improved convergence properties and (d) a local observability matrix that is consistent with the underlying nonlinear system. Furthermore, we demonstrate how to include IMU biases, add/remove contacts, and formulate both world-centric and robo-centri
Autonomous exploration of unknown environments with aerial vehicles remains a challenge, especially in perceptually degraded conditions. Dust, fog, or a lack of visual or LiDAR-based features results in severe difficulties for state estimation algorithms, which failure can be catastrophic. In this work, we show that it is indeed possible to navigate in such conditions without any exteroceptive sensing by exploiting collisions instead of treating them as constraints. To this end, we present a novel contact-based inertial odometry (CIO) algorithm: it uses estimated external forces with the environment to detect collisions and generate pseudo-measurements of the robot velocity, enabling autonomous flight. To fully exploit this method, we first perform modeling of a hybrid ground and aerial vehicle which can withstand collisions at moderate speeds, for which we develop an external wrench estimation algorithm. Then, we present our CIO algorithm and develop a reactive planner and control law which encourage exploration by bouncing off obstacles. All components of this framework are validated in hardware experiments and we demonstrate that a quadrotor can traverse a cluttered environment using an IMU only. This work can be used on drones to recover from visual inertial odometry failure or on micro-drones that do not have the payload capacity to carry cameras, LiDARs or powerful computers.
We present an open-source untethered quadrupedal soft robot platform for dynamic locomotion (e.g., high-speed running and backflipping). The robot is mostly soft (80 vol.%) while driven by four geared servo motors. The robots soft body and soft legs were 3D printed with gyroid infill using a flexible material, enabling it to conform to the environment and passively stabilize during locomotion on multi-terrain environments. In addition, we simulated the robot in a real-time soft body simulation. With tuned gaits in simulation, the real robot can locomote at a speed of 0.9 m/s (2.5 body length/second), substantially faster than most untethered legged soft robots published to date. We hope this platform, along with its verified simulator, can catalyze the development of soft robotics.