Do you want to publish a course? Click here

A low-power end-to-end hybrid neuromorphic framework for surveillance applications

53   0   0.0 ( 0 )
 Added by Andres Ussa Caycedo
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

With the success of deep learning, object recognition systems that can be deployed for real-world applications are becoming commonplace. However, inference that needs to largely take place on the `edge (not processed on servers), is a highly computational and memory intensive workload, making it intractable for low-power mobile nodes and remote security applications. To address this challenge, this paper proposes a low-power (5W) end-to-end neuromorphic framework for object tracking and classification using event-based cameras that possess desirable properties such as low power consumption (5-14 mW) and high dynamic range (120 dB). Nonetheless, unlike traditional approaches of using event-by-event processing, this work uses a mixed frame and event approach to get energy savings with high performance. Using a frame-based region proposal method based on the density of foreground events, a hardware-friendly object tracking is implemented using the apparent object velocity while tackling occlusion scenarios. For low-power classification of the tracked objects, the event camera is interfaced to IBM TrueNorth, which is time-multiplexed to tackle up to eight instances for a traffic monitoring application. The frame-based object track input is converted back to spikes for Truenorth classification via the energy efficient deep network (EEDN) pipeline. Using originally collected datasets, we train the TrueNorth model on the hardware track outputs, instead of using ground truth object locations as commonly done, and demonstrate the efficacy of our system to handle practical surveillance scenarios. Finally, we compare the proposed methodologies to state-of-the-art event-based systems for object tracking and classification, and demonstrate the use case of our neuromorphic approach for low-power applications without sacrificing on performance.



rate research

Read More

This paper introduces a novel all-spike low-power solution for remote wireless inference that is based on neuromorphic sensing, Impulse Radio (IR), and Spiking Neural Networks (SNNs). In the proposed system, event-driven neuromorphic sensors produce asynchronous time-encoded data streams that are encoded by an SNN, whose output spiking signals are pulse modulated via IR and transmitted over general frequence-selective channels; while the receivers inputs are obtained via hard detection of the received signals and fed to an SNN for classification. We introduce an end-to-end training procedure that treats the cascade of encoder, channel, and decoder as a probabilistic SNN-based autoencoder that implements Joint Source-Channel Coding (JSCC). The proposed system, termed NeuroJSCC, is compared to conventional synchronous frame-based and uncoded transmissions in terms of latency and accuracy. The experiments confirm that the proposed end-to-end neuromorphic edge architecture provides a promising framework for efficient and low-latency remote sensing, communication, and inference.
3D object detector based on Hough voting achieves great success and derives many follow-up works. Despite constantly refreshing the detection accuracy, these works suffer from handcrafted components used to eliminate redundant boxes, and thus are non-end-to-end and time-consuming. In this work, we propose a suppress-and-refine framework to remove these handcrafted components. To fully utilize full-resolution information and achieve real-time speed, it directly consumes feature points and redundant 3D proposals. Specifically, it first suppresses noisy 3D feature points and then feeds them to 3D proposals for the following RoI-aware refinement. With the gating mechanism to build fine proposal features and the self-attention mechanism to model relationships, our method can produce high-quality predictions with a small computation budget in an end-to-end manner. To this end, we present the first fully end-to-end 3D detector, SRDet, on the basis of VoteNet. It achieves state-of-the-art performance on the challenging ScanNetV2 and SUN RGB-D datasets with the fastest speed ever. Our code will be available at https://github.com/ZJULearning/SRDet.
We propose a novel framework for creating large-scale photorealistic datasets of indoor scenes, with ground truth geometry, material, lighting and semantics. Our goal is to make the dataset creation process widely accessible, transforming scans into photorealistic datasets with high-quality ground truth for appearance, layout, semantic labels, high quality spatially-varying BRDF and complex lighting, including direct, indirect and visibility components. This enables important applications in inverse rendering, scene understanding and robotics. We show that deep networks trained on the proposed dataset achieve competitive performance for shape, material and lighting estimation on real images, enabling photorealistic augmented reality applications, such as object insertion and material editing. We also show our semantic labels may be used for segmentation and multi-task learning. Finally, we demonstrate that our framework may also be integrated with physics engines, to create virtual robotics environments with unique ground truth such as friction coefficients and correspondence to real scenes. The dataset and all the tools to create such datasets will be made publicly available.
152 - Yaoming Cai , Xiaobo Liu , 2019
Hyperspectral image (HSI) consists of hundreds of continuous narrow bands with high spectral correlation, which would lead to the so-called Hughes phenomenon and the high computational cost in processing. Band selection has been proven effective in avoiding such problems by removing the redundant bands. However, many of existing band selection methods separately estimate the significance for every single band and cannot fully consider the nonlinear and global interaction between spectral bands. In this paper, by assuming that a complete HSI can be reconstructed from its few informative bands, we propose a general band selection framework, Band Selection Network (termed as BS-Net). The framework consists of a band attention module (BAM), which aims to explicitly model the nonlinear inter-dependencies between spectral bands, and a reconstruction network (RecNet), which is used to restore the original HSI cube from the learned informative bands, resulting in a flexible architecture. The resulting framework is end-to-end trainable, making it easier to train from scratch and to combine with existing networks. We implement two BS-Nets respectively using fully connected networks (BS-Net-FC) and convolutional neural networks (BS-Net-Conv), and compare the results with many existing band selection approaches for three real hyperspectral images, demonstrating that the proposed BS-Nets can accurately select informative band subset with less redundancy and achieve significantly better classification performance with an acceptable time cost.
Supervised learning based object detection frameworks demand plenty of laborious manual annotations, which may not be practical in real applications. Semi-supervised object detection (SSOD) can effectively leverage unlabeled data to improve the model performance, which is of great significance for the application of object detection models. In this paper, we revisit SSOD and propose Instant-Teaching, a completely end-to-end and effective SSOD framework, which uses instant pseudo labeling with extended weak-strong data augmentations for teaching during each training iteration. To alleviate the confirmation bias problem and improve the quality of pseudo annotations, we further propose a co-rectify scheme based on Instant-Teaching, denoted as Instant-Teaching$^*$. Extensive experiments on both MS-COCO and PASCAL VOC datasets substantiate the superiority of our framework. Specifically, our method surpasses state-of-the-art methods by 4.2 mAP on MS-COCO when using $2%$ labeled data. Even with full supervised information of MS-COCO, the proposed method still outperforms state-of-the-art methods by about 1.0 mAP. On PASCAL VOC, we can achieve more than 5 mAP improvement by applying VOC07 as labeled data and VOC12 as unlabeled data.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا