Do you want to publish a course? Click here

Kernelized Wasserstein Natural Gradient

102   0   0.0 ( 0 )
 Added by Michael Arbel
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Many machine learning problems can be expressed as the optimization of some cost functional over a parametric family of probability distributions. It is often beneficial to solve such optimization problems using natural gradient methods. These methods are invariant to the parametrization of the family, and thus can yield more effective optimization. Unfortunately, computing the natural gradient is challenging as it requires inverting a high dimensional matrix at each iteration. We propose a general framework to approximate the natural gradient for the Wasserstein metric, by leveraging a dual formulation of the metric restricted to a Reproducing Kernel Hilbert Space. Our approach leads to an estimator for gradient direction that can trade-off accuracy and computational cost, with theoretical guarantees. We verify its accuracy on simple examples, and show the advantage of using such an estimator in classification tasks on Cifar10 and Cifar100 empirically.



rate research

Read More

Natural gradient descent has proven effective at mitigating the effects of pathological curvature in neural network optimization, but little is known theoretically about its convergence properties, especially for emph{nonlinear} networks. In this work, we analyze for the first time the speed of convergence of natural gradient descent on nonlinear neural networks with squared-error loss. We identify two conditions which guarantee efficient convergence from random initializations: (1) the Jacobian matrix (of networks output for all training cases with respect to the parameters) has full row rank, and (2) the Jacobian matrix is stable for small perturbations around the initialization. For two-layer ReLU neural networks, we prove that these two conditions do in fact hold throughout the training, under the assumptions of nondegenerate inputs and overparameterization. We further extend our analysis to more general loss functions. Lastly, we show that K-FAC, an approximate natural gradient descent method, also converges to global minima under the same assumptions, and we give a bound on the rate of this convergence.
We propose the Wasserstein Auto-Encoder (WAE)---a new algorithm for building a generative model of the data distribution. WAE minimizes a penalized form of the Wasserstein distance between the model distribution and the target distribution, which leads to a different regularizer than the one used by the Variational Auto-Encoder (VAE). This regularizer encourages the encoded training distribution to match the prior. We compare our algorithm with several other techniques and show that it is a generalization of adversarial auto-encoders (AAE). Our experiments show that WAE shares many of the properties of VAEs (stable training, encoder-decoder architecture, nice latent manifold structure) while generating samples of better quality, as measured by the FID score.
A quantum generalization of Natural Gradient Descent is presented as part of a general-purpose optimization framework for variational quantum circuits. The optimization dynamics is interpreted as moving in the steepest descent direction with respect to the Quantum Information Geometry, corresponding to the real part of the Quantum Geometric Tensor (QGT), also known as the Fubini-Study metric tensor. An efficient algorithm is presented for computing a block-diagonal approximation to the Fubini-Study metric tensor for parametrized quantum circuits, which may be of independent interest.
152 - Yao Chen , Qingyi Gao , Xiao Wang 2021
Generative Adversarial Networks (GANs) have been impactful on many problems and applications but suffer from unstable training. The Wasserstein GAN (WGAN) leverages the Wasserstein distance to avoid the caveats in the minmax two-player training of GANs but has other defects such as mode collapse and lack of metric to detect the convergence. We introduce a novel inferential Wasserstein GAN (iWGAN) model, which is a principled framework to fuse auto-encoders and WGANs. The iWGAN model jointly learns an encoder network and a generator network motivated by the iterative primal dual optimization process. The encoder network maps the observed samples to the latent space and the generator network maps the samples from the latent space to the data space. We establish the generalization error bound of the iWGAN to theoretically justify its performance. We further provide a rigorous probabilistic interpretation of our model under the framework of maximum likelihood estimation. The iWGAN, with a clear stopping criteria, has many advantages over other autoencoder GANs. The empirical experiments show that the iWGAN greatly mitigates the symptom of mode collapse, speeds up the convergence, and is able to provide a measurement of quality check for each individual sample. We illustrate the ability of the iWGAN by obtaining competitive and stable performances for benchmark datasets.
Survival Analysis and Reliability Theory are concerned with the analysis of time-to-event data, in which observations correspond to waiting times until an event of interest such as death from a particular disease or failure of a component in a mechanical system. This type of data is unique due to the presence of censoring, a type of missing data that occurs when we do not observe the actual time of the event of interest but, instead, we have access to an approximation for it given by random interval in which the observation is known to belong. Most traditional methods are not designed to deal with censoring, and thus we need to adapt them to censored time-to-event data. In this paper, we focus on non-parametric goodness-of-fit testing procedures based on combining the Steins method and kernelized discrepancies. While for uncensored data, there is a natural way of implementing a kernelized Stein discrepancy test, for censored data there are several options, each of them with different advantages and disadvantages. In this paper, we propose a collection of kernelized Stein discrepancy tests for time-to-event data, and we study each of them theoretically and empirically; our experimental results show that our proposed methods perform better than existing tests, including previous tests based on a kernelized maximum mean discrepancy.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا