Glauber Monte Carlo predictions for ultra-relativistic collisions with ${}^{16}{rm O}$


Abstract in English

We explore Glauber Monte Carlo predictions for the planned ultra-relativistic ${}^{16}{rm O}$+${}^{16}{rm O}$ and p+${}^{16}{rm O}$ collisions, as well as for collisions of ${}^{16}{rm O}$ on heavy targets. In particular, we present specific collective flow measures which are approximately independent on the hydrodynamic response of the system, such as the ratios of eccentricities obtained from cumulants with different numbers of particles, or correlations of ellipticity and triangularity described by the normalized symmetric cumulants. We use the state-of-the-art correlated nuclear distributions for ${}^{16}{rm O}$ and compare the results to the uncorrelated case, finding moderate effects for the most central collisions. We also consider the wounded quark model, which turns out to yield similar results to the wounded nucleon model for the considered measures. The purpose of our study is to prepare some ground for the upcoming experimental proposals, as well as to provide input for possible more detailed dynamical studies with hydrodynamics or transport codes.

Download