Do you want to publish a course? Click here

PDE methods in random matrix theory

105   0   0.0 ( 0 )
 Added by Brian C. Hall
 Publication date 2019
  fields Physics
and research's language is English
 Authors Brian C. Hall




Ask ChatGPT about the research

This article begins with a brief review of random matrix theory, followed by a discussion of how the large-$N$ limit of random matrix models can be realized using operator algebras. I then explain the notion of Brown measure, which play the role of the eigenvalue distribution for operators in an operator algebra. I then show how methods of partial differential equations can be used to compute Brown measures. I consider in detail the case of the circular law and then discuss more briefly the case of the free multiplicative Brownian motion, which was worked out recently by the author with Driver and Kemp.



rate research

Read More

The purpose of this review article is to present some of the latest developments using random techniques, and in particular, random matrix techniques in quantum information theory. Our review is a blend of a rather exhaustive review, combined with more detailed examples -- coming from research projects in which the authors were involved. We focus on two main topics, random quantum states and random quantum channels. We present results related to entropic quantities, entanglement of typical states, entanglement thresholds, the output set of quantum channels, and violations of the minimum output entropy of random channels.
We study continuous-time (variable speed) random walks in random environments on $mathbb{Z}^d$, $dge2$, where, at time $t$, the walk at $x$ jumps across edge $(x,y)$ at time-dependent rate $a_t(x,y)$. The rates, which we assume stationary and ergodic with respect to space-time shifts, are symmetric and bounded but possibly degenerate in the sense that the total jump rate from a vertex may vanish over finite intervals of time. We formulate conditions on the environment under which the law of diffusively-scaled random walk path tends to Brownian motion for almost every sample of the rates. The proofs invoke Moser iteration to prove sublinearity of the corrector in pointwise sense; a key additional input is a conversion of certain weighted energy norms to ordinary ones. Our conclusions apply to random walks on dynamical bond percolation and interacting particle systems as well as to random walks arising from the Helffer-Sjostrand representation of gradient models with certain non-strictly convex potentials.
We compute critical properties of a general class of quantum spin chains which are quadratic in the Fermi operators and can be solved exactly under certain symmetry constraints related to the classical compact groups $U(N)$, $O(N)$ and $Sp(2N)$. In particular we calculate critical exponents $s$, $ u$ and $z$, corresponding to the energy gap, correlation length and dynamic exponent respectively. We also compute the ground state correlators $leftlangle sigma^{x}_{i} sigma^{x}_{i+n} rightrangle_{g}$, $leftlangle sigma^{y}_{i} sigma^{y}_{i+n} rightrangle_{g}$ and $leftlangle prod^{n}_{i=1} sigma^{z}_{i} rightrangle_{g}$, all of which display quasi-long-range order with a critical exponent dependent upon system parameters. Our approach establishes universality of the exponents for the class of systems in question.
88 - P. Deift , A. Its , I. Krasovsky 2006
In this paper we consider an asymptotic question in the theory of the Gaussian Unitary Ensemble of random matrices. In the bulk scaling limit, the probability that there are no eigenvalues in the interval (0,2s) is given by P_s=det(I-K_s), where K_s is the trace-class operator with kernel K_s(x,y)={sin(x-y)}/{pi(x-y)} acting on L^2(0,2s). We are interested particularly in the behavior of P_s as s tends to infinity...
156 - Yueyun Hu , Nobuo Yoshida 2007
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. This model is known to exhibit a phase transition: If $d ge 3$ and the environment is not too random, then, the total population grows as fast as its expectation with strictly positive probability. If,on the other hand, $d le 2$, or the environment is ``random enough, then the total population grows strictly slower than its expectation almost surely. We show the equivalence between the slow population growth and a natural localization property in terms of replica overlap. We also prove a certain stronger localization property, whenever the total population grows strictly slower than its expectation almost surely.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا