Do you want to publish a course? Click here

Decentralized Heterogeneous Multi-Player Multi-Armed Bandits with Non-Zero Rewards on Collisions

305   0   0.0 ( 0 )
 Added by Akshayaa Magesh
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We consider a fully decentralized multi-player stochastic multi-armed bandit setting where the players cannot communicate with each other and can observe only their own actions and rewards. The environment may appear differently to different players, $textit{i.e.}$, the reward distributions for a given arm are heterogeneous across players. In the case of a collision (when more than one player plays the same arm), we allow for the colliding players to receive non-zero rewards. The time-horizon $T$ for which the arms are played is emph{not} known to the players. Within this setup, where the number of players is allowed to be greater than the number of arms, we present a policy that achieves near order-optimal expected regret of order $O(log^{1 + delta} T)$ for some $0 < delta < 1$ over a time-horizon of duration $T$. This paper is currently under review at IEEE Transactions on Information Theory.



rate research

Read More

We introduce a framework for decentralized online learning for multi-armed bandits (MAB) with multiple cooperative players. The reward obtained by the players in each round depends on the actions taken by all the players. Its a team setting, and the objective is common. Information asymmetry is what makes the problem interesting and challenging. We consider three types of information asymmetry: action information asymmetry when the actions of the players cant be observed but the rewards received are common; reward information asymmetry when the actions of the other players are observable but rewards received are IID from the same distribution; and when we have both action and reward information asymmetry. For the first setting, we propose a UCB-inspired algorithm that achieves $O(log T)$ regret whether the rewards are IID or Markovian. For the second section, we offer an environment such that the algorithm given for the first setting gives linear regret. For the third setting, we show that a variation of the `explore then commit algorithm achieves almost log regret.
This paper focuses on building personalized player models solely from player behavior in the context of adaptive games. We present two main contributions: The first is a novel approach to player modeling based on multi-armed bandits (MABs). This approach addresses, at the same time and in a principled way, both the problem of collecting data to model the characteristics of interest for the current player and the problem of adapting the interactive experience based on this model. Second, we present an approach to evaluating and fine-tuning these algorithms prior to generating data in a user study. This is an important problem, because conducting user studies is an expensive and labor-intensive process; therefore, an ability to evaluate the algorithms beforehand can save a significant amount of resources. We evaluate our approach in the context of modeling players social comparison orientation (SCO) and present empirical results from both simulations and real players.
We consider the cooperative multi-player version of the stochastic multi-armed bandit problem. We study the regime where the players cannot communicate but have access to shared randomness. In prior work by the first two authors, a strategy for this regime was constructed for two players and three arms, with regret $tilde{O}(sqrt{T})$, and with no collisions at all between the players (with very high probability). In this paper we show that these properties (near-optimal regret and no collisions at all) are achievable for any number of players and arms. At a high level, the previous strategy heavily relied on a $2$-dimensional geometric intuition that was difficult to generalize in higher dimensions, while here we take a more combinatorial route to build the new strategy.
This paper studies a new variant of the stochastic multi-armed bandits problem, where the learner has access to auxiliary information about the arms. The auxiliary information is correlated with the arm rewards, which we treat as control variates. In many applications, the arm rewards are a function of some exogenous values, whose mean value is known a priori from historical data and hence can be used as control variates. We use the control variates to obtain mean estimates with smaller variance and tighter confidence bounds. We then develop an algorithm named UCB-CV that uses improved estimates. We characterize the regret bounds in terms of the correlation between the rewards and control variates. The experiments on synthetic data validate the performance guarantees of our proposed algorithm.
During online decision making in Multi-Armed Bandits (MAB), one needs to conduct inference on the true mean reward of each arm based on data collected so far at each step. However, since the arms are adaptively selected--thereby yielding non-iid data--conducting inference accurately is not straightforward. In particular, sample averaging, which is used in the family of UCB and Thompson sampling (TS) algorithms, does not provide a good choice as it suffers from bias and a lack of good statistical properties (e.g. asymptotic normality). Our thesis in this paper is that more sophisticated inference schemes that take into account the adaptive nature of the sequentially collected data can unlock further performance gains, even though both UCB and TS type algorithms are optimal in the worst case. In particular, we propose a variant of TS-style algorithms--which we call doubly adaptive TS--that leverages recent advances in causal inference and adaptively reweights the terms of a doubly robust estimator on the true mean reward of each arm. Through 20 synthetic domain experiments and a semi-synthetic experiment based on data from an A/B test of a web service, we demonstrate that using an adaptive inferential scheme (while still retaining the exploration efficacy of TS) provides clear benefits in online decision making: the proposed DATS algorithm has superior empirical performance to existing baselines (UCB and TS) in terms of regret and sample complexity in identifying the best arm. In addition, we also provide a finite-time regret bound of doubly adaptive TS that matches (up to log factors) those of UCB and TS algorithms, thereby establishing that its improved practical benefits do not come at the expense of worst-case suboptimality.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا