Do you want to publish a course? Click here

Ab initio study of lattice dynamics of dodecaborides ZrB12 and LuB12

146   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We performed ab initio lattice-dynamics calculations of frame-cluster dodecaborides ZrB12 and LuB12. As a whole, our calculated phonon frequencies and atom-projected density of states are consistent with the results of available first-principles calculations and experimental measurements. So we conclude that the ab initio DFT approach is quite appropriate to study the sufficiently subtle physics of these compounds. Our experiment-independent calculations provide an explicit quantitative confirmation of mixing the eigenvectors of boron and metal vibrations, which was previously observed in experiments.



rate research

Read More

We present ab initio density-functional study of the noncentrosymmetric B20-type phase of RhGe, which is not found in nature and can be synthesized only at extreme pressures and temperatures. The structural, thermodynamic, electronic, lattice-dynamical, and transport properties of B20-RhGe are calculated, and their evolution with increasing pressure is traced. The temperature dependence of the charge and heat transport properties is evaluated within the semi-classical Boltzmann approach. Using the quasi-harmonic approximation, we determine the range of pressures and temperatures, in which B20-RhGe is stable, and make recommendations for optimizing the synthesis conditions in order to reduce the number of defects that occur in a sample during solidification.
A Molecular Dynamics (MD) study of static and dynamic properties of molten and glassy germanium dioxide is presented. The interactions between the atoms are modelled by the classical pair potential proposed by Oeffner and Elliott (OE) [Oeffner R D and Elliott S R 1998, Phys. Rev. B, 58, 14791]. We compare our results to experiments and previous simulations. In addition, an ab initio method, the so-called Car-Parrinello Molecular Dynamics (CPMD), is applied to check the accuracy of the structural properties, as obtained by the classical MD simulations with the OE potential. As in a similar study for SiO2, the structure predicted by CPMD is only slightly softer than that resulting from the classical MD. In contrast to earlier simulations, both the static structure and dynamic properties are in very good agreement with pertinent experimental data. MD simulations with the OE potential are also used to study the relaxation dynamics. As previously found for SiO2, for high temperatures the dynamics of molten GeO2 is compatible with a description in terms of mode coupling theory.
The accurate calculation of excited state properties of interacting electrons in the condensed phase is an immense challenge in computational physics. Here, we use state-of-the-art equation-of-motion coupled-cluster theory with single and double excitations (EOM-CCSD) to calculate the dynamic structure factor, which can be experimentally measured by inelastic x-ray and electron scattering. Our calculations are performed on the uniform electron gas at densities corresponding to Wigner-Seitz radii of $r_s=5$, 4, and 3 corresponding to the valence electron densities of common metals. We compare our results to those obtained using the random-phase approximation, which is known to provide a reasonable description of the collective plasmon excitation and which resums only a small subset of the polarizability diagrams included in EOM-CCSD. We find that EOM-CCSD, instead of providing a perturbative improvement on the RPA plasmon, predicts a many-state plasmon resonance, where each contributing state has a double-excitation character of 80% or more. This finding amounts to an ab initio treatment of the plasmon linewidth, which is in good quantitative agreement with previous diagrammatic calculations, and highlights the strongly correlated nature of lifetime effects in condensed-phase electronic structure theory.
We examined the reliability of exchange-correlation functionals for molecular encapsulations combined by van der Waals forces, comparing their predictions with those of diffusion Monte Carlo method. We established that functionals with D3 dispersion force correction and including sufficient proportion of exact-exchange in long-ranged interaction can comparatively reliably estimate the binding strength. Our finding agrees with a previous ab initio study on argon dimer. However we found that even such functionals may not be able to distinguish the energy differences among different conformations.
We investigate how different chemical environment influences magnetic properties of terbium(III) (Tb)-based single-molecule magnets (SMMs), using first-principles relativistic multireference methods. Recent experiments showed that Tb-based SMMs can have exceptionally large magnetic anisotropy and that they can be used for experimental realization of quantum information applications, with a judicious choice of chemical environment. Here, we perform complete active space self-consistent field (CASSCF) calculations including relativistic spin-orbit interaction (SOI) for representative Tb-based SMMs such as TbPc$_2$ and TbPcNc in three charge states. We calculate low-energy electronic structure from which we compute the Tb crystal-field parameters and construct an effective pseudospin Hamiltonian. Our calculations show that ligand type and fine points of molecular geometry do not affect the zero-field splitting, while the latter varies weakly with oxidation number. On the other hand, higher-energy levels have a strong dependence on all these characteristics. For neutral TbPc$_2$ and TbPcNc molecules, the Tb magnetic moment and the ligand spin are parallel to each other and the coupling strength between them does not depend much on ligand type and details of atomic structure. However, ligand distortion and molecular symmetry play a crucial role in transverse crystal-field parameters which lead to tunnel splitting. The tunnel splitting induces quantum tunneling of magnetization by itself or by combining with other processes. Our results provide insight into mechanisms of magnetization relaxation in the representative Tb-based SMMs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا