Uniform perfectness for Interval Exchange Transformations with or without Flips


Abstract in English

Let $mathcal G$ be the group of all Interval Exchange Transformations. Results of Arnoux-Fathi ([Arn81b]), Sah ([Sah81]) and Vorobets ([Vor17]) state that $mathcal G_0$ the subgroup of $mathcal G$ generated by its commutators is simple. In [Arn81b], Arnoux proved that the group $overline{mathcal G}$ of all Interval Exchange Transformations with flips is simple. We establish that every element of $overline{mathcal G}$ has a commutator length not exceeding $6$. Moreover, we give conditions on $mathcal G$ that guarantee that the commutator lengths of the elements of $mathcal G_0$ are uniformly bounded, and in this case for any $gin mathcal G_0$ this length is at most $5$. As analogous arguments work for the involution length in $overline{mathcal G}$, we add an appendix whose purpose is to prove that every element of $overline{mathcal G}$ has an involution length not exceeding $12$.

Download