Do you want to publish a course? Click here

Keyphrase Extraction from Scholarly Articles as Sequence Labeling using Contextualized Embeddings

264   0   0.0 ( 0 )
 Added by Debanjan Mahata
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper, we formulate keyphrase extraction from scholarly articles as a sequence labeling task solved using a BiLSTM-CRF, where the words in the input text are represented using deep contextualized embeddings. We evaluate the proposed architecture using both contextualized and fixed word embedding models on three different benchmark datasets (Inspec, SemEval 2010, SemEval 2017) and compare with existing popular unsupervised and supervised techniques. Our results quantify the benefits of (a) using contextualized embeddings (e.g. BERT) over fixed word embeddings (e.g. Glove); (b) using a BiLSTM-CRF architecture with contextualized word embeddings over fine-tuning the contextualized word embedding model directly, and (c) using genre-specific contextualized embeddings (SciBERT). Through error analysis, we also provide some insights into why particular models work better than others. Lastly, we present a case study where we analyze different self-attention layers of the two best models (BERT and SciBERT) to better understand the predictions made by each for the task of keyphrase extraction.



rate research

Read More

The premise of manual keyphrase annotation is to read the corresponding content of an annotated object. Intuitively, when we read, more important words will occupy a longer reading time. Hence, by leveraging human reading time, we can find the salient words in the corresponding content. However, previous studies on keyphrase extraction ignore human reading features. In this article, we aim to leverage human reading time to extract keyphrases from microblog posts. There are two main tasks in this study. One is to determine how to measure the time spent by a human on reading a word. We use eye fixation durations extracted from an open source eye-tracking corpus (OSEC). Moreover, we propose strategies to make eye fixation duration more effective on keyphrase extraction. The other task is to determine how to integrate human reading time into keyphrase extraction models. We propose two novel neural network models. The first is a model in which the human reading time is used as the ground truth of the attention mechanism. In the second model, we use human reading time as the external feature. Quantitative and qualitative experiments show that our proposed models yield better performance than the baseline models on two microblog datasets.
Many efforts have been made to facilitate natural language processing tasks with pre-trained language models (LMs), and brought significant improvements to various applications. To fully leverage the nearly unlimited corpora and capture linguistic information of multifarious levels, large-size LMs are required; but for a specific task, only parts of these information are useful. Such large-sized LMs, even in the inference stage, may cause heavy computation workloads, making them too time-consuming for large-scale applications. Here we propose to compress bulky LMs while preserving useful information with regard to a specific task. As different layers of the model keep different information, we develop a layer selection method for model pruning using sparsity-inducing regularization. By introducing the dense connectivity, we can detach any layer without affecting others, and stretch shallow and wide LMs to be deep and narrow. In model training, LMs are learned with layer-wise dropouts for better robustness. Experiments on two benchmark datasets demonstrate the effectiveness of our method.
123 - Lei Shu , Hu Xu , Bing Liu 2019
One key task of fine-grained sentiment analysis on reviews is to extract aspects or features that users have expressed opinions on. This paper focuses on supervised aspect extraction using a modified CNN called controlled CNN (Ctrl). The modified CNN has two types of control modules. Through asynchronous parameter updating, it prevents over-fitting and boosts CNNs performance significantly. This model achieves state-of-the-art results on standard aspect extraction datasets. To the best of our knowledge, this is the first paper to apply control modules to aspect extraction.
Production of news content is growing at an astonishing rate. To help manage and monitor the sheer amount of text, there is an increasing need to develop efficient methods that can provide insights into emerging content areas, and stratify unstructured corpora of text into `topics that stem intrinsically from content similarity. Here we present an unsupervised framework that brings together powerful vector embeddings from natural language processing with tools from multiscale graph partitioning that can reveal natural partitions at different resolutions without making a priori assumptions about the number of clusters in the corpus. We show the advantages of graph-based clustering through end-to-end comparisons with other popular clustering and topic modelling methods, and also evaluate different text vector embeddings, from classic Bag-of-Words to Doc2Vec to the recent transformers based model Bert. This comparative work is showcased through an analysis of a corpus of US news coverage during the presidential election year of 2016.
Growing polarization of the news media has been blamed for fanning disagreement, controversy and even violence. Early identification of polarized topics is thus an urgent matter that can help mitigate conflict. However, accurate measurement of topic-wise polarization is still an open research challenge. To address this gap, we propose Partisanship-aware Contextualized Topic Embeddings (PaCTE), a method to automatically detect polarized topics from partisan news sources. Specifically, utilizing a language model that has been finetuned on recognizing partisanship of the news articles, we represent the ideology of a news corpus on a topic by corpus-contextualized topic embedding and measure the polarization using cosine distance. We apply our method to a dataset of news articles about the COVID-19 pandemic. Extensive experiments on different news sources and topics demonstrate the efficacy of our method to capture topical polarization, as indicated by its effectiveness of retrieving the most polarized topics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا