Two links are link-homotopic if they are transformed into each other by a sequence of self-crossing changes and ambient isotopies. The link-homotopy classes of 4-component links were classified by Levine with enormous algebraic computations. We modify the results by using Habiros clasper theory. The new classification gives more symmetrical and schematic points of view to the link-homotopy classes of 4-component links. As applications, we give several new subsets of the link-homotopy classes of 4-component links which are classified by comparable invariants and give an algorithm which determines whether given two links are link-homotopic or not.
Two string links are equivalent up to $2n$-moves and link-homotopy if and only if their all Milnor link-homotopy invariants are congruent modulo $n$. Moreover, the set of the equivalence classes forms a finite group generated by elements of order $n$. The classification induces that if two string links are equivalent up to $2n$-moves for every $n>0$, then they are link-homotopic.
A handlebody-link is a disjoint union of embeddings of handlebodies in $S^3$ and an HL-homotopy is an equivalence relation on handlebody-links generated by self-crossing changes. The second author and Ryo Nikkuni classified the set of HL-homotopy classes of 2-component handlebody-links completely using the linking numbers for handlebody-links. In this paper, we construct a family of invariants for HL-homotopy classes of general handlebody-links, by using Milnors link-homotopy invariants. Moreover, we give a bijection between the set of HL-homotopy classes of almost trivial handlebody-links and tensor product space modulo some general linear actions, especially for 3- or more component handlebody-links. Through this bijection we construct comparable invariants of HL-homotopy classes.
Ribbon 2-knotted objects are locally flat embeddings of surfaces in 4-space which bound immersed 3-manifolds with only ribbon singularities. They appear as topological realizations of welded knotted objects, which is a natural quotient of virtual knot theory. In this paper we consider ribbon tubes and ribbon torus-links, which are natural analogues of string links and links, respectively. We show how ribbon tubes naturally act on the reduced free group, and how this action classifies ribbon tubes up to link-homotopy, that is when allowing each component to cross itself. At the combinatorial level, this provides a classification of welded string links up to self-virtualization. This generalizes a result of Habegger and Lin on usual string links, and the above-mentioned action on the reduced free group can be refined to a general virtual extension of Milnor invariants. As an application, we obtain a classification of ribbon torus-links up to link-homotopy.
We start a systematic analysis of links up to 5-move equivalence. Our motivation is to develop tools which later can be used to study skein modules based on the skein relation being deformation of a 5-move (in an analogous way as the Kauffman skein module is a deformation of a 2-move, i.e. a crossing change). Our main tools are Jones and Kauffman polynomials and the fundamental group of the 2-fold branch cover of S^3 along a link. We use also the fact that a 5-move is a composition of two rational pm (2,2)-moves (i.e. pm 5/2-moves) and rational moves can be analyzed using the group of Fox colorings and its non-abelian version, the Burnside group of a link. One curious observation is that links related by one (2,2)-move are not 5-move equivalent. In particular, we partially classify (up to 5-moves) 3-braids, pretzel and Montesinos links, and links up to 9 crossings.
We study the set $widehat{mathcal S}_M$ of framed smoothly slice links which lie on the boundary of the complement of a 1-handlebody in a closed, simply connected, smooth 4-manifold $M$. We show that $widehat{mathcal S}_M$ is well-defined and describe how it relates to exotic phenomena in dimension four. In particular, in the case when $X$ is smooth, with a handle decompositions with no 1-handles and homeomorphic to but not smoothly embeddable in $D^4$, our results tell us that $X$ is exotic if and only if there is a link $Lhookrightarrow S^3$ which is smoothly slice in $X$, but not in $D^4$. Furthermore, we extend the notion of high genus 2-handle attachment, introduced by Hayden and Piccirillo, to prove that exotic 4-disks that are smoothly embeddable in $D^4$, and therefore possible counterexamples to the smooth 4-dimensional Schonflies conjecture, cannot be distinguished from $D^4$ only by comparing the slice genus functions of links.