No Arabic abstract
Recent years have witnessed the great success of deep neural networks in many research areas. The fundamental idea behind the design of most neural networks is to learn similarity patterns from data for prediction and inference, which lacks the ability of logical reasoning. However, the concrete ability of logical reasoning is critical to many theoretical and practical problems. In this paper, we propose Neural Logic Network (NLN), which is a dynamic neural architecture that builds the computational graph according to input logical expressions. It learns basic logical operations as neural modules, and conducts propositional logical reasoning through the network for inference. Experiments on simulated data show that NLN achieves significant performance on solving logical equations. Further experiments on real-world data show that NLN significantly outperforms state-of-the-art models on collaborative filtering and personalized recommendation tasks.
Markov Logic Networks (MLNs), which elegantly combine logic rules and probabilistic graphical models, can be used to address many knowledge graph problems. However, inference in MLN is computationally intensive, making the industrial-scale application of MLN very difficult. In recent years, graph neural networks (GNNs) have emerged as efficient and effective tools for large-scale graph problems. Nevertheless, GNNs do not explicitly incorporate prior logic rules into the models, and may require many labeled examples for a target task. In this paper, we explore the combination of MLNs and GNNs, and use graph neural networks for variational inference in MLN. We propose a GNN variant, named ExpressGNN, which strikes a nice balance between the representation power and the simplicity of the model. Our extensive experiments on several benchmark datasets demonstrate that ExpressGNN leads to effective and efficient probabilistic logic reasoning.
Extracting spatial-temporal knowledge from data is useful in many applications. It is important that the obtained knowledge is human-interpretable and amenable to formal analysis. In this paper, we propose a method that trains neural networks to learn spatial-temporal properties in the form of weighted graph-based signal temporal logic (wGSTL) formulas. For learning wGSTL formulas, we introduce a flexible wGSTL formula structure in which the users preference can be applied in the inferred wGSTL formulas. In the proposed framework, each neuron of the neural networks corresponds to a subformula in a flexible wGSTL formula structure. We initially train a neural network to learn the wGSTL operators and then train a second neural network to learn the parameters in a flexible wGSTL formula structure. We use a COVID-19 dataset and a rain prediction dataset to evaluate the performance of the proposed framework and algorithms. We compare the performance of the proposed framework with three baseline classification methods including K-nearest neighbors, decision trees, and artificial neural networks. The classification accuracy obtained by the proposed framework is comparable with the baseline classification methods.
Probabilistic Neural Network (PNN) is a feed-forward artificial neural network developed for solving classification problems. This paper proposes a hardware implementation of an approximated PNN (APNN) algorithm in which the conventional exponential function of the PNN is replaced with gated threshold logic. The weights of the PNN are approximated using a memristive crossbar architecture. In particular, the proposed algorithm performs normalization of the training weights, and quantization into 16 levels which significantly reduces the complexity of the circuit.
We introduce the value iteration network (VIN): a fully differentiable neural network with a `planning module embedded within. VINs can learn to plan, and are suitable for predicting outcomes that involve planning-based reasoning, such as policies for reinforcement learning. Key to our approach is a novel differentiable approximation of the value-iteration algorithm, which can be represented as a convolutional neural network, and trained end-to-end using standard backpropagation. We evaluate VIN based policies on discrete and continuous path-planning domains, and on a natural-language based search task. We show that by learning an explicit planning computation, VIN policies generalize better to new, unseen domains.
Monte Carlo tree search (MCTS) is extremely popular in computer Go which determines each action by enormous simulations in a broad and deep search tree. However, human experts select most actions by pattern analysis and careful evaluation rather than brute search of millions of future nteractions. In this paper, we propose a computer Go system that follows experts way of thinking and playing. Our system consists of two parts. The first part is a novel deep alternative neural network (DANN) used to generate candidates of next move. Compared with existing deep convolutional neural network (DCNN), DANN inserts recurrent layer after each convolutional layer and stacks them in an alternative manner. We show such setting can preserve more contexts of local features and its evolutions which are beneficial for move prediction. The second part is a long-term evaluation (LTE) module used to provide a reliable evaluation of candidates rather than a single probability from move predictor. This is consistent with human experts nature of playing since they can foresee tens of steps to give an accurate estimation of candidates. In our system, for each candidate, LTE calculates a cumulative reward after several future interactions when local variations are settled. Combining criteria from the two parts, our system determines the optimal choice of next move. For more comprehensive experiments, we introduce a new professional Go dataset (PGD), consisting of 253233 professional records. Experiments on GoGoD and PGD datasets show the DANN can substantially improve performance of move prediction over pure DCNN. When combining LTE, our system outperforms most relevant approaches and open engines based on MCTS.