Do you want to publish a course? Click here

MiSTree: a Python package for constructing and analysing Minimum Spanning Trees

116   0   0.0 ( 0 )
 Added by Krishna Naidoo
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The minimum spanning tree (MST), a graph constructed from a distribution of points, draws lines between pairs of points so that all points are linked in a single skeletal structure that contains no loops and has minimal total edge length. The MST has been used in a broad range of scientific fields such as particle physics (to distinguish classes of events in collider collisions), in astronomy (to detect mass segregation in star clusters) and cosmology (to search for filaments in the cosmic web). Its success in these fields has been driven by its sensitivity to the spatial distribution of points and the patterns within. MiSTree, a public Python package, allows a user to construct the MST in a variety of coordinates systems, including Celestial coordinates used in astronomy. The package enables the MST to be constructed quickly by initially using a k-nearest neighbour graph (kNN, rather than a matrix of pairwise distances) which is then fed to Kruskals algorithm to construct the MST. MiSTree enables a user to measure the statistics of the MST and provides classes for binning the MST statistics (into histograms) and plotting the distributions. Applying the MST will enable the inclusion of high-order statistics information from the cosmic web which can provide additional information to improve cosmological parameter constraints. This information has not been fully exploited due to the computational cost of calculating N-point statistics. MiSTree was designed to be used in cosmology but could be used in any field which requires extracting non-Gaussian information from point distributions. The source code for MiSTree is available on GitHub at https://github.com/knaidoo29/mistree



rate research

Read More

Chemical tagging of stellar debris from disrupted open clusters and associations underpins the science cases for next-generation multi-object spectroscopic surveys. As part of the Galactic Archaeology project TraCD (Tracking Cluster Debris), a preliminary attempt at reconstructing the birth clouds of now phase-mixed thin disk debris is undertaken using a parametric minimum spanning tree (MST) approach. Empirically-motivated chemical abundance pattern uncertainties (for a 10-dimensional chemistry-space) are applied to NBODY6-realised stellar associations dissolved into a background sea of field stars, all evolving in a Milky Way potential. We demonstrate that significant population reconstruction degeneracies appear when the abundance uncertainties approach 0.1 dex and the parameterised MST approach is employed; more sophisticated methodologies will be required to ameliorate these degeneracies.
We present the first public version (v0.2) of the open-source and community-developed Python package, Astropy. This package provides core astronomy-related functionality to the community, including support for domain-specific file formats such as Flexible Image Transport System (FITS) files, Virtual Observatory (VO) tables, and common ASCII table formats, unit and physical quantity
The minimum degree spanning tree (MDST) problem requires the construction of a spanning tree $T$ for graph $G=(V,E)$ with $n$ vertices, such that the maximum degree $d$ of $T$ is the smallest among all spanning trees of $G$. In this paper, we present two new distributed approximation algorithms for the MDST problem. Our first result is a randomized distributed algorithm that constructs a spanning tree of maximum degree $hat d = O(dlog{n})$. It requires $O((D + sqrt{n}) log^2 n)$ rounds (w.h.p.), where $D$ is the graph diameter, which matches (within log factors) the optimal round complexity for the related minimum spanning tree problem. Our second result refines this approximation factor by constructing a tree with maximum degree $hat d = O(d + log{n})$, though at the cost of additional polylogarithmic factors in the round complexity. Although efficient approximation algorithms for the MDST problem have been known in the sequential setting since the 1990s, our results are first efficient distributed solutions for this problem.
High-resolution optical integral field units (IFUs) are rapidly expanding our knowledge of extragalactic emission nebulae in galaxies and galaxy clusters. By studying the spectra of these objects -- which include classic HII regions, supernova remnants, planetary nebulae, and cluster filaments -- we are able to constrain their kinematics (velocity and velocity dispersion). In conjunction with additional tools, such as the BPT diagram, we can further classify emission regions based on strong emission-line flux ratios. LUCI is a simple-to-use python module intended to facilitate the rapid analysis of IFU spectra. LUCI does this by integrating well-developed pre-existing python tools such as astropy and scipy with new machine learning tools for spectral analysis (Rhea et al. 2020). Furthermore, LUCI provides several easy-to-use tools to access and fit SITELLE data cubes.
We describe a new open source package for calculating properties of galaxy clusters, including NFW halo profiles with and without the effects of cluster miscentering. This pure-Python package, cluster-lensing, provides well-documented and easy-to-use classes and functions for calculating cluster scaling relations, including mass-richness and mass-concentration relations from the literature, as well as the surface mass density $Sigma(R)$ and differential surface mass density $DeltaSigma(R)$ profiles, probed by weak lensing magnification and shear. Galaxy cluster miscentering is especially a concern for stacked weak lensing shear studies of galaxy clusters, where offsets between the assumed and the true underlying matter distribution can lead to a significant bias in the mass estimates if not accounted for. This software has been developed and released in a public GitHub repository, and is licensed under the permissive MIT license. The cluster-lensing package is archived on Zenodo (Ford 2016). Full documentation, source code, and installation instructions are available at http://jesford.github.io/cluster-lensing/.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا