Fibred GK geometry and supersymmetric $AdS$ solutions


Abstract in English

We continue our study of a general class of $mathcal{N}=2$ supersymmetric $AdS_3times Y_7$ and $AdS_2times Y_9$ solutions of type IIB and $D=11$ supergravity, respectively. The geometry of the internal spaces is part of a general family of GK geometries, $Y_{2n+1}$, $nge 3$, and here we study examples in which $Y_{2n+1}$ fibres over a Kahler base manifold $B_{2k}$, with toric fibres. We show that the flux quantization conditions, and an action function that determines the supersymmetric $R$-symmetry Killing vector of a geometry, may all be written in terms of the master volume of the fibre, together with certain global data associated with the Kahler base. In particular, this allows one to compute the central charge and entropy of the holographically dual $(0,2)$ SCFT and dual superconformal quantum mechanics, respectively, without knowing the explicit form of the $Y_7$ or $Y_9$ geometry. We illustrate with a number of examples, finding agreement with explicit supergravity solutions in cases where these are known, and we also obtain new results. In addition we present, en passant, new formulae for calculating the volumes of Sasaki-Einstein manifolds.

Download