No Arabic abstract
In this Topical Review we consider stochastic processes under resetting, which have attracted a lot of attention in recent years. We begin with the simple example of a diffusive particle whose position is reset randomly in time with a constant rate $r$, which corresponds to Poissonian resetting, to some fixed point (e.g. its initial position). This simple system already exhibits the main features of interest induced by resetting: (i) the system reaches a nontrivial nonequilibrium stationary state (ii) the mean time for the particle to reach a target is finite and has a minimum, optimal, value as a function of the resetting rate $r$. We then generalise to an arbitrary stochastic process (e.g. Levy flights or fractional Brownian motion) and non-Poissonian resetting (e.g. power-law waiting time distribution for intervals between resetting events). We go on to discuss multiparticle systems as well as extended systems, such as fluctuating interfaces, under resetting. We also consider resetting with memory which implies resetting the process to some randomly selected previous time. Finally we give an overview of recent developments and applications in the field.
Stochastic processes offer a fundamentally different paradigm of dynamics than deterministic processes that students are most familiar with, the most prominent example of the latter being Newtons laws of motion. Here, we discuss in a pedagogical manner a simple and illustrative example of stochastic processes in the form of a particle undergoing standard Brownian diffusion, with the additional feature of the particle resetting repeatedly and at random times to its initial condition. Over the years, many different variants of this simple setting have been studied, including extensions to many-body interacting systems, all of which serve as illustrations of peculiar static and dynamic features that characterize stochastic dynamics at long times. We will provide in this work a brief overview of this active and rapidly evolving field by considering the arguably simplest example of Brownian diffusion in one dimension. Along the way, we will learn about some of the general techniques that a physicist employs to study stochastic processes.
We study a diffusion process on a three-dimensional comb under stochastic resetting. We consider three different types of resetting: global resetting from any point in the comb to the initial position, resetting from a finger to the corresponding backbone and resetting from secondary fingers to the main fingers. The transient dynamics along the backbone in all three cases is different due to the different resetting mechanisms, finding a wide range of dynamics for the mean squared displacement. For the particular geometry studied herein, we compute the stationary solution and the mean square displacement and find that the global resetting breaks the transport in the three directions. Regarding the resetting to the backbone, the transport is broken in two directions but it is enhanced in the main axis. Finally, the resetting to the fingers enhances the transport in the backbone and the main fingers but reaches a steady value for the mean squared displacement in the secondary fingers.
We study the dynamics of predator-prey systems where prey are confined to a single region of space and where predators move randomly according to a power-law (Levy) dispersal kernel. Site fidelity, an important feature of animal behaviour, is incorporated in the model through a stochastic resetting dynamics of the predators to the prey patch. We solve in the long time limit the rate equations of Lotka-Volterra type that describe the evolution of the two species densities. Fixing the demographic parameters and the Levy exponent, the total population of predators can be maximized for a certain value of the resetting rate. This optimal value achieves a compromise between over-exploitation and under-utilization of the habitat. Similarly, at fixed resetting rate, there exists a Levy exponent which is optimal regarding predator abundance. These findings are supported by 2D stochastic simulations and show that the combined effects of diffusion and resetting can broadly extend the region of species coexistence in ecosystems facing resources scarcity.
Stochastic resetting, a diffusive process whose amplitude is reset to the origin at random times, is a vividly studied strategy to optimize encounter dynamics, e.g., in chemical reactions. We here generalize the resetting step by introducing a random resetting amplitude, such that the diffusing particle may be only partially reset towards the trajectory origin, or even overshoot the origin in a resetting step. We introduce different scenarios for the random-amplitude stochastic resetting process and discuss the resulting dynamics. Direct applications are geophysical layering (stratigraphy) as well as population dynamics or financial markets, as well as generic search processes.
A stochastic process with movement, return, and rest phases is considered in this paper. For the movement phase, the particles move following the dynamics of Gaussian process or ballistic type of Levy walk, and the time of each movement is random. For the return phase, the particles will move back to the origin with a constant velocity or acceleration or under the action of a harmonic force after each movement, so that this phase can also be treated as a non-instantaneous resetting. After each return, a rest with a random time at the origin follows. The asymptotic behaviors of the mean squared displacements with different kinds of movement dynamics, random resting time, and returning are discussed. The stationary distributions are also considered when the process is localized. Besides, the mean first passage time is considered when the dynamic of movement phase is Brownian motion.