Do you want to publish a course? Click here

Strategies for achieving high key rates in satellite-based QKD

95   0   0.0 ( 0 )
 Added by Sebastian Ecker
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum key distribution (QKD) is a pioneering quantum technology on the brink of widespread deployment. Nevertheless, the distribution of secret keys beyond a few 100 kilometers at practical rates remains a major challenge. One approach to circumvent lossy terrestrial transmission of entangled photon pairs is the deployment of optical satellite links. Optimizing these non-static quantum links to yield the highest possible key rate is essential for their successful operation. We therefore developed a high-brightness polarization-entangled photon pair source and a receiver module with a fast steering mirror capable of satellite tracking. We employed this state-of-the-art hardware to distribute photons over a terrestrial free-space link with a distance of 143 km, and extracted secure key rates up to 300 bits per second. Contrary to fiber-based links, the channel loss in satellite downlinks is time-varying and the link time is limited to a few minutes. We therefore propose a model-based optimization of link parameters based on current channel and receiver conditions. This model and our field test will prove helpful in the design and operation of future satellite missions and advance the distribution of secret keys at high rates on a global scale.



rate research

Read More

Global quantum secure communication can be achieved using quantum key distribution (QKD) with orbiting satellites. Established techniques use attenuated lasers as weak coherent pulse (WCP) sources, with so-called decoy-state protocols, to generate the required single-photon-level pulses. While such approaches are elegant, they come at the expense of attainable final key due to inherent multi-photon emission, thereby constraining secure key generation over the high-loss, noisy channels expected for satellite transmissions. In this work we improve on this limitation by using true single-photon pulses generated from a semiconductor quantum dot (QD) embedded in a nanowire, possessing low multi-photon emission ($<10^{-6}$) and an extraction system efficiency of -15 dB (or 3.1%). Despite the limited efficiency, the key generated by the QD source is greater than that generated by a WCP source under identical repetition rate and link conditions representative of a satellite pass. We predict that with realistic improvements of the QD extraction efficiency to -4.0 dB (or 40%), the quantum-dot QKD protocol outperforms WCP-decoy-state QKD by almost an order of magnitude. Consequently, a QD source could allow generation of a secure key in conditions where a WCP source would simply fail, such as in the case of high channel losses. Our demonstration is the first specific use case that shows a clear benefit for QD-based single-photon sources in secure quantum communication, and has the potential to enhance the viability and efficiency of satellite-based QKD networks.
Global quantum communications will enable long-distance secure data transfer, networked distributed quantum information processing, and other entanglement-enabled technologies. Satellite quantum communication overcomes optical fibre range limitations, with the first realisations of satellite quantum key distribution (SatQKD) being rapidly developed. However, limited transmission times between satellite and ground station severely constrains the amount of secret key due to finite-block size effects. Here, we analyse these effects and the implications for system design and operation, utilising published results from the Micius satellite to construct an empirically-derived channel and system model for a trusted-node downlink employing efficient BB84 weak coherent pulse decoy states with optimised parameters. We quantify practical SatQKD performance limits and examine the effects of link efficiency, background light, source quality, and overpass geometries to estimate long-term key generation capacity. Our results may guide design and analysis of future missions, and establish performance benchmarks for both sources and detectors.
The security of quantum key distribution has traditionally been analyzed in either the asymptotic or non-asymptotic regimes. In this paper, we provide a bridge between these two regimes, by determining second-order coding rates for key distillation in quantum key distribution under collective attacks. Our main result is a formula that characterizes the backoff from the known asymptotic formula for key distillation -- our formula incorporates the reliability and security of the protocol, as well as the mutual information variances to the legitimate receiver and the eavesdropper. In order to determine secure key rates against collective attacks, one should perform a joint optimization of the Holevo information and the Holevo information variance to the eavesdropper. We show how to do so by analyzing several examples, including the six-state, BB84, and continuous-variable quantum key distribution protocols (the last involving Gaussian modulation of coherent states along with heterodyne detection). The technical contributions of this paper include one-shot and second-order analyses of private communication over a compound quantum wiretap channel with fixed marginal and key distillation over a compound quantum wiretap source with fixed marginal. We also establish the second-order asymptotics of the smooth max-relative entropy of quantum states acting on a separable Hilbert space, and we derive a formula for the Holevo information variance of a Gaussian ensemble of Gaussian states.
Quantum key distribution (QKD) enables unconditionally secure communication guaranteed by the laws of physics. The last decades have seen tremendous efforts in making this technology feasible under real-life conditions, with implementations bridging ever longer distances and creating ever higher secure key rates. Readily deployed glass fiber connections are a natural choice for distributing the single photons necessary for QKD both in intra- and intercity links. Any fiber-based implementation however experiences chromatic dispersion which deteriorates temporal detection precision. This ultimately limits maximum distance and achievable key rate of such QKD systems. In this work, we address this limitation to both maximum distance and key rate and present an effective and easy-to-implement method to overcome chromatic dispersion effects. By exploiting the entangled photons frequency correlations, we make use of nonlocal dispersion compensation to improve the photons temporal correlations. Our experiment is the first implementation utilizing the inherently quantum-mechanical effect of nonlocal dispersion compensation for QKD in this way. We experimentally show an increase in key rate from 6.1 to 228.3 bits/s over 6.46 km of telecom fiber. Our approach is extendable to arbitrary fiber lengths and dispersion values, resulting in substantially increased key rates and even enabling QKD in the first place where strong dispersion would otherwise frustrate key extraction at all.
Recently, large-scale quantum networks that connect metropolitan area quantum networks between cities have been realized by integrating free-space and fibre quantum key distribution (QKD) links, yet the fibre-based trusted nodes in such networks could be subject to constant surveillance and probes. To remove these fibre-channel risks, we consider a network in which a space-based relay, the Micius satellite, executes a sequence of key delivery missions, allowing any two cities to have a shared key. In this work, we develop a comprehensive framework integrated with precise orbital modelling and a cloud statistics model to enable a preassessment of satellite-based QKD applications. Using this framework, we consider three different scheduling strategies and estimate the keys that can be delivered to cities. The results show that the strategy of pursing the maximum number of final keys significantly embodies space-based QKD advantages, while the strategy of considering different levels of missions achieves the delivery of more keys to higher-priority missions. Most importantly, the targeted strategy of pursuing a distribution of final keys delivered that is coincident with the network traffic distribution guarantees individual needs, further promoting the utilization of the delivered keys in practice. We also provide a comparison of the total number of keys delivered by satellites with different-altitude orbits. It is demonstrated that the plan for constructing a low-Earth orbit (LEO) satellite constellation is more efficient than that for employing an expensive high-orbit satellite in terms of achieving potential applications. Our work not only provides a practical method in the near term but also gives the initial exploration to establish the quantum network.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا