Do you want to publish a course? Click here

Ellipticity of Brightest Cluster Galaxies as tracer of halo orientation and weak-lensing mass bias

109   0   0.0 ( 0 )
 Added by Ricardo Herbonnet
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Weak-lensing measurements of the masses of galaxy clusters are commonly based on the assumption of spherically symmetric density profiles. Yet, the cold dark matter model predicts the shapes of dark matter halos to be triaxial. Halo triaxiality, and the orientation of the major axis with respect to the line of sight, are expected to be the leading cause of intrinsic scatter in weak-lensing mass measurements. The shape of central cluster galaxies (Brightest Cluster Galaxies; BCGs) is expected to follow the shape of the dark matter halo. Here we investigate the use of BCG ellipticity as predictor of the weak-lensing mass bias in individual clusters compared to the mean. Using weak lensing masses $M^{rm WL}_{500}$ from the Weighing the Giants project, and $M_{500}$ derived from gas masses as low-scatter mass proxy, we find that, on average, the lensing masses of clusters with the roundest / most elliptical 25% of BCGs are biased $sim 20$% high / low compared to the average, as qualitatively predicted by the cold dark matter model. For cluster cosmology projects utilizing weak-lensing mass estimates, the shape of the BCG can thus contribute useful information on the effect of orientation bias in weak lensing mass estimates as well as on cluster selection bias.

rate research

Read More

Galaxy clusters have a triaxial matter distribution. The weak-lensing signal, an important part in cosmological studies, measures the projected mass of all matter along the line-of-sight, and therefore changes with the orientation of the cluster. Studies suggest that the shape of the brightest cluster galaxy (BCG) in the centre of the cluster traces the underlying halo shape, enabling a method to account for projection effects. We use 324 simulated clusters at four redshifts between 0.1 and 0.6 from `The Three Hundred Project to quantify correlations between the orientation and shape of the BCG and the halo. We find that haloes and their embedded BCGs are aligned, with an average $sim$20 degree angle between their major axes. The bias in weak lensing cluster mass estimates correlates with the orientation of both the halo and the BCG. Mimicking observations, we compute the projected shape of the BCG, as a measure of the BCG orientation, and find that it is most strongly correlated to the weak-lensing mass for relaxed clusters. We also test a 2-dimensional cluster relaxation proxy measured from BCG mass isocontours. The concentration of stellar mass in the projected BCG core compared to the total stellar mass provides an alternative proxy for the BCG orientation. We find that the concentration does not correlate to the weak-lensing mass bias, but does correlate with the true halo mass. These results indicate that the BCG shape and orientation for large samples of relaxed clusters can provide information to improve weak-lensing mass estimates.
92 - Tae-hyeon Shin 2017
We study the ellipticity of galaxy cluster halos as characterized by the distribution of cluster galaxies and as measured with weak lensing. We use monte-carlo simulations of elliptical cluster density profiles to estimate and correct for Poisson noise bias, edge bias and projection effects. We apply our methodology to 10,428 SDSS clusters identified by the redMaPPer algorithm with richness above 20. We find a mean ellipticity $= 0.271 pm 0.002$ (stat) $pm 0.031$ (sys) corresponding to an axis ratio $= 0.573 pm 0.002$ (stat) $pm 0.039$ (sys). We compare this ellipticity of the satellites to the halo shape, through a stacked lensing measurement using optimal estimators of the lensing quadrupole based on Clampitt and Jain (2016). We find a best-fit axis ratio of $0.56 pm 0.09$ (stat) $pm 0.03$ (sys), consistent with the ellipticity of the satellite distribution. Thus cluster galaxies trace the shape of the dark matter halo to within our estimated uncertainties. Finally, we restack the satellite and lensing ellipticity measurements along the major axis of the cluster central galaxys light distribution. From the lensing measurements we infer a misalignment angle with an RMS of ${30^circ pm 10}^circ$ when stacking on the central galaxy. We discuss applications of halo shape measurements to test the effects of the baryonic gas and AGN feedback, as well as dark matter and gravity. The major improvements in signal-to-noise expected with the ongoing Dark Energy Survey and future surveys from LSST, Euclid and WFIRST will make halo shapes a useful probe of these effects.
We constrain the average halo ellipticity of ~2 600 galaxy groups from the Galaxy And Mass Assembly (GAMA) survey, using the weak gravitational lensing signal measured from the overlapping Kilo Degree Survey (KiDS). To do so, we quantify the azimuthal dependence of the stacked lensing signal around seven different proxies for the orientation of the dark matter distribution, as it is a priori unknown which one traces the orientation best. On small scales, the major axis of the brightest group/cluster member (BCG) provides the best proxy, leading to a clear detection of an anisotropic signal. In order to relate that to a halo ellipticity, we have to adopt a model density profile. We derive new expressions for the quadrupole moments of the shear field given an elliptical model surface mass density profile. Modeling the signal with an elliptical Navarro-Frenk-White (NFW) profile on scales < 250 kpc, which roughly corresponds to half the virial radius, and assuming that the BCG is perfectly aligned with the dark matter, we find an average halo ellipticity of e_h=0.38 +/- 0.12. This agrees well with results from cold-dark-matter-only simulations, which typically report values of e_h ~ 0.3. On larger scales, the lensing signal around the BCGs does not trace the dark matter distribution well, and the distribution of group satellites provides a better proxy for the halos orientation instead, leading to a 3--4 sigma detection of a non-zero halo ellipticity at scales between 250 kpc and 750 kpc. Our results suggest that the distribution of stars enclosed within a certain radius forms a good proxy for the orientation of the dark matter within that radius, which has also been observed in hydrodynamical simulations.
Parametric modeling of galaxy cluster density profiles from weak lensing observations leads to a mass bias, whose detailed understanding is critical in deriving accurate mass-observable relations for constraining cosmological models. Drawing from existing methods, we develop a robust framework for calculating this mass bias in one-parameter fits to simulations of dark matter halos. We show that our approach has the advantage of being independent of the absolute noise level, so that only the number of halos in a given simulation and the representativeness of the simulated halos for real clusters limit the accuracy of the bias estimation. While we model the bias as a log-normal distribution and the halos with a Navarro-Frenk-White profile, our method can be generalized to any bias distribution and parametric model of the radial mass distribution. We find that the log-normal assumption is not strictly valid in the presence of miscentring of halos. We investigate the use of cluster centers derived from weak lensing in the context of mass bias, and tentatively find that such centroids can yield sensible mass estimates if the convergence peak has a signal-to-noise ratio approximately greater than four. In this context we also find that the standard approach to estimating the positional uncertainty of weak lensing mass peaks using bootstrapping severely underestimates the true positional uncertainty for peaks with low signal-to-noise ratios. Though we determine the mass and redshift dependence of the bias distribution for a few experimental setups, our focus remains providing a general approach to computing such distributions.
Cosmological inference from cluster number counts is systematically limited by the accuracy of the mass calibration, i.e. the empirical determination of the mapping between cluster selection observables and halo mass. In this work we demonstrate a method to quantitatively determine the bias and uncertainties in weak-lensing mass calibration. To this end, we extract a library of projected matter density profiles from hydrodynamical simulations. Accounting for shear bias and noise, photometric redshift uncertainties, mis-centering, cluster member contamination, cluster morphological diversity, and line-of-sight projections, we produce a library of shear profiles. Fitting a one-parameter model to these profiles, we extract the so-called emph{weak lensing mass} $M_text{WL}$. Relating the weak-lensing mass to the halo mass from gravity-only simulations with the same initial conditions as the hydrodynamical simulations allows us to estimate the impact of hydrodynamical effects on cluster number counts experiments. Creating new shear libraries for $sim$1000 different realizations of the systematics, provides a distribution of the parameters of the weak-lensing to halo mass relation, reflecting their systematic uncertainty. This result can be used as a prior for cosmological inference. We also discuss the impact of the inner fitting radius on the accuracy, and determine the outer fitting radius necessary to exclude the signal from neighboring structures. Our method is currently being applied to different Stage~III lensing surveys, and can easily be extended to Stage~IV lensing surveys.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا