Do you want to publish a course? Click here

High-dimensional quantum communication: benefits, progress, and future challenges

93   0   0.0 ( 0 )
 Added by Davide Bacco
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In recent years, there has been a rising interest in high-dimensional quantum states and their impact on quantum communication. Indeed, the availability of an enlarged Hilbert space offers multiple advantages, from larger information capacity and increased noise resilience, to novel fundamental research possibilities in quantum physics. Multiple photonic degrees of freedom have been explored to generate high-dimensional quantum states, both with bulk optics and integrated photonics. Furthermore, these quantum states have been propagated through various channels, textit{e.g.} free-space links, single-mode, multicore, and multimode fibers and also aquatic channels, experimentally demonstrating the theoretical advantages over two-dimensional systems. Here, we review the state of the art on the generation, the propagation and the detection of high-dimensional quantum states.



rate research

Read More

Machine translation (MT) is a technique that leverages computers to translate human languages automatically. Nowadays, neural machine translation (NMT) which models direct mapping between source and target languages with deep neural networks has achieved a big breakthrough in translation performance and become the de facto paradigm of MT. This article makes a review of NMT framework, discusses the challenges in NMT, introduces some exciting recent progresses and finally looks forward to some potential future research trends. In addition, we maintain the state-of-the-art methods for various NMT tasks at the website https://github.com/ZNLP/SOTA-MT.
The characterization of quantum processes, e.g. communication channels, is an essential ingredient for establishing quantum information systems. For quantum key distribution protocols, the amount of overall noise in the channel determines the rate at which secret bits are distributed between authorized partners. In particular, tomographic protocols allow for the full reconstruction, and thus characterization, of the channel. Here, we perform quantum process tomography of high-dimensional quantum communication channels with dimensions ranging from 2 to 5. We can thus explicitly demonstrate the effect of an eavesdropper performing an optimal cloning attack or an intercept-resend attack during a quantum cryptographic protocol. Moreover, our study shows that quantum process tomography enables a more detailed understanding of the channel conditions compared to a coarse-grained measure, such as quantum bit error rates. This full characterization technique allows us to optimize the performance of quantum key distribution under asymmetric experimental conditions, which is particularly useful when considering high-dimensional encoding schemes.
Quantum communication is a holy grail to achieve secure communication among a set of partners, since it is provably unbreakable by physical laws. Quantum sensing employs quantum entanglement as an extra resource to determine parameters by either using less resources or attaining a precision unachievable in classical protocols. A paradigmatic example is the quantum radar, which allows one to detect an object without being detected oneself, by making use of the additional asset provided by quantum entanglement to reduce the intensity of the signal. In the optical regime, impressive technological advances have been reached in the last years, such as the first quantum communication between ground and satellites, as well as the first proof-of-principle experiments in quantum sensing. The development of microwave quantum technologies turned out, nonetheless, to be more challenging. Here, we will discuss the challenges regarding the use of microwaves for quantum communication and sensing. Based on this analysis, we propose a roadmap to achieve real-life applications in these fields.
Most of our lives are conducted in the cyberspace. The human notion of privacy translates into a cyber notion of privacy on many functions that take place in the cyberspace. This article focuses on three such functions: how to privately retrieve information from cyberspace (privacy in information retrieval), how to privately leverage large-scale distributed/parallel processing (privacy in distributed computing), and how to learn/train machine learning models from private data spread across multiple users (privacy in distributed (federated) learning). The article motivates each privacy setting, describes the problem formulation, summarizes breakthrough results in the history of each problem, and gives recent results and discusses some of the major ideas that emerged in each field. In addition, the cross-cutting techniques and interconnections between the three topics are discussed along with a set of open problems and challenges.
Quantum networks are the ultimate target in quantum communication, where many connected users can share information carried by quantum systems. The keystones of such structures are the reliable generation, transmission and manipulation of quantum states. Two-dimensional quantum states, qubits, are steadily adopted as information units. However, high-dimensional quantum states, qudits, constitute a richer resource for future quantum networks, exceeding the limitations imposed by the ubiquitous qubits. The generation and manipulation of such $D$-level systems have been improved over the last ten years, but their reliable transmission between remote locations remains the main challenge. Here, we show how a recent air-core fiber supporting orbital angular momentum (OAM) modes can be exploited to faithfully transmit $D$-dimensional states. Four OAM quantum states and their superpositions are created, propagated in a 1.2 km long fiber and detected with high fidelities. In addition, three quantum key distribution (QKD) protocols are implemented as concrete applications to assert the practicality of our results. This experiment enhances the distribution of high-dimensional quantum states, attesting the orbital angular momentum as vessel for the future quantum network.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا