A well-known theorem of Rodin & Sullivan, previously conjectured by Thurston, states that the circle packing of the intersection of a lattice with a simply connected planar domain $Omega$ into the unit disc $mathbb{D}$ converges to a Riemann map from $Omega$ to $mathbb{D}$ when the mesh size converges to 0. We prove the analogous statement when circle packings are replaced by the square tilings of Brooks et al.
In this paper we study height fluctuations of random lozenge tilings of polygonal domains on the triangular lattice through nonintersecting Bernoulli random walks. For a large class of polygons which have exactly one horizontal upper boundary edge, we show that these random height functions converge to a Gaussian Free Field as predicted by Kenyon and Okounkov [28]. A key ingredient of our proof is a dynamical version of the discrete loop equations as introduced by Borodin, Guionnet and Gorin [5], which might be of independent interest.
We develop linear discretization of complex analysis, originally introduced by R. Isaacs, J. Ferrand, R. Duffin, and C. Mercat. We prove convergence of discrete period matrices and discrete Abelian integrals to their continuous counterparts. We also prove a discrete counterpart of the Riemann--Roch theorem. The proofs use energy estimates inspired by electrical networks.
We study tilings of the square lattice by linear trimers. For a cylinder of circumference m, we construct a conserved functional of the base of the tilings, and use this to block-diagonalize the transfer matrix. The number of blocks increases exponentially with m. The dimension of the ground-state block is shown to grow as (3 / 2^{1/3})^m. We numerically diagonalize this block for m <= 27, obtaining the estimate S = 0.158520 +- 0.000015 for the entropy per site in the thermodynamic limit. We present numerical evidence that the continuum limit of the model has conformal invariance. We measure several scaling dimensions, including those corresponding to defects of dimers and L-shaped trimers. The trimer tilings of a plane admits a two-dimensional height representation. Monte Carlo simulations of the height variables show that the height-height correlations grows logarithmically at large separation, and the orientation-orientation correlations decay as a power law.
We consider the preferential attachment model with multiple vertex types introduced by Antunovic, Mossel and Racz. We give an example with three types, based on the game of rock-paper-scissors, where the proportions of vertices of the different types almost surely do not converge to a limit, giving a counterexample to a conjecture of Antunovic, Mossel and Racz. We also consider another family of examples where we show that the conjecture does hold.
We consider the complex eigenvalues of a Wishart type random matrix model $X=X_1 X_2^*$, where two rectangular complex Ginibre matrices $X_{1,2}$ of size $Ntimes (N+ u)$ are correlated through a non-Hermiticity parameter $tauin[0,1]$. For general $ u=O(N)$ and $tau$ we obtain the global limiting density and its support, given by a shifted ellipse. It provides a non-Hermitian generalisation of the Marchenko-Pastur distribution, which is recovered at maximal correlation $X_1=X_2$ when $tau=1$. The square root of the complex Wishart eigenvalues, corresponding to the non-zero complex eigenvalues of the Dirac matrix $mathcal{D}=begin{pmatrix} 0 & X_1 X_2^* & 0 end{pmatrix},$ are supported in a domain parametrised by a quartic equation. It displays a lemniscate type transition at a critical value $tau_c,$ where the interior of the spectrum splits into two connected components. At multi-criticality we obtain the limiting local kernel given by the edge kernel of the Ginibre ensemble in squared variables. For the global statistics, we apply Frostmans equilibrium problem to the 2D Coulomb gas, whereas the local statistics follows from a saddle point analysis of the kernel of orthogonal Laguerre polynomials in the complex plane.