Binomial Edge Ideals of Generalized block graphs


Abstract in English

We classify generalized block graphs whose binomial edge ideals admit a unique extremal Betti number. We prove that the Castelnuovo-Mumford regularity of binomial edge ideals of generalized block graphs is bounded below by $m(G)+1$, where $m(G)$ is the number of minimal cut sets of the graph $G$ and obtain an improved upper bound for the regularity in terms of the number of maximal cliques and pendant vertices of $G$.

Download